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PREFACE.

fMHE present work on tlie Differential and Integral Calculus is

designed as a text-book for colleges and scientific schools. The

aim has been to exhibit the subject in as concise and simple a manner

as was consistent with rigor of demonstration, to make it as attractive

to the beginner as the nature of the Calculus would permit, and td

arrange the successive portions of the subject in the order best suited

for tlie student.

I have adopted the method of infinitesimals, having learned from

experience tliat the fundamental principles of the subject are made

more intelligible to beginners by tlie method of infinitesimals than by

that of limits, while iu the practical applications of the Calculus the

investigations are carried on entirely by ihe method of infinitesimals.

At the same time, a tliorough knowledge of the subject requires that

the student should become acquainted with both methods ; and for

this reason, Chapter III is devoted exclusively to the method of

limits. In this chapter, all the fundamental rules for differentiating

algebraic and transcendental functions are obtained by the method of

limits, so that the student may compare the two methods. This chap-

ter may be omitted without intecfering with the continuity of the

work, but the omission of at least the first part of the chapter is not

recommended.

To familiarize the student with the principles of the subject, and

to fix the principles in his mind, a large number of examples is given

at the ends of the chapters. These examples have been carefully

selected with the view of illustrating the most important points of

the subject. The greater part of them will present no serious diffi-

culty to the student, whUe a few may require some analytical skill.



IV PREFAGa.

In preparing this book, I liave availed myself pretty freely of tie

writings of the best American and English and French authors.

Many volumes have been consulted vrhose titles are not mentioned,

as credit could not be given in every case, and probably I am indebted

to these volumes for more thaff I am aware of. The chief sources

upon which I have drawn are indicated by the references in the body

of the work, and need not be here repeated. For examples, I have

drawn upon the treatises of Gregory, Price, Todhunter, Williamson,

Young, Hall, Rice and Johnson, Ray, and Olney, while quite a num-

ber has been taken from the works of De liorgan, Lacroix, Serret,

Courtenay, Loomis, Church, Byerly, Dociiarty, Strong, Smyth, and

the Mathematical Visitor; and I would hereby acknowledge my
indebtedness to all the above-named works, both American and

foreign, for many valuable hints, as well as for examples. A few

examples have been prepared specially for this work.

I have again to express my thanks to Mr. R. W. Prentiss, Fellovt

in Mathematics at the Johns Hopkins University, for reading the MS
and for valuable suggestions.

E. A. B.

Rutgers Collegb,

New Brunswick, N. J., June, 1880. \
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PART I.

DIFFERENTIAL CALCULUS,

CHAPTER I.

FIRST PRINCIPLES.

1. Constants and Variables.—In the Calculus, as in

Analytic Geometry, there are two kinds of quantities used,

condanis and variables.

A constant quantity, or simply a constant, is one whose

value does not cbange in the same discussion, and is repre-

sented by one of the leading letters of the alphabet.

A variable quantity, or simply a variable, is one which

admits of an infinite number of values within certain limits

that are debermined by the nature of the problem, and is

represented by one of the final letters of the alphabet.

For example, in the equation of the parabola,

«/2 = 2px,

X and y are variables, as they represent the co-ordinates of

any point of the parabola, and so may have an indefinite

number of different values. %p is a constant, as it represents

the latns rectum of the parabola, and so has but one fixed

value. Any given number is constant.

2. Independent and Dependent Variables. — Au
independent variable is one to which any arbitrary value may
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be assigned at pleasure. A dependent variable is one whose

value varies in, consequence of the variation of the inde-

pendent variable or variables with which it is connected.

Thus, in the equation of the circle

y? -\- y^ =^ r\

if we assign to x any arbitrary value, and 6nd the correspond-

ing value of y, we make x the independent variable, and y
the dependent variable. If we were to assign to y any arbi-

trary value, and find the corresponding value of x, we would

make y the independent variable and x the dependent

variable.

Frequently, when we are considering two or more varia-

bles, it is in our power to make whichever we please the

independent variable. But, having once chosen the inde-

pendent variable, we are not at liberty to change it through-

out our operations, unless we make the cori'esponding trans-

formations which such a change would require.

3. Functions.—One quantity is called a function of

another, when it is so connected with it that no change can

take place in the latter without producing a corresponding

change in the former.

For example, the sine, cosine, tangent, etc., of an angle

are said to be functions of the angle, as they depend upon

the angle for their value. Also, the area of a square is a

function of its side ; the volume of a sphere is a function of

its radius. In like manner, any algebraic expression in x, as

a? — 2bx^ + hx + c,

is a function of x. Also, we may have a function of two or

more variables : a rectangle is a function of its two sides

;

a parallelepiped is a function of its three edges ; the expres-

sion tan {ax + by) is a function of two variables, x and y;

a;3 4- y2 _|_ ^2 ig a, function of three variables, x, y, and z ; etc.

When we wish to write that one quantity is a function of
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one or more others, and wish, at the same time, to indicate

several forms of functions in the same discussion, we use

such symbols as the following

:

y^f{x); y = F{x); y = <p{x); y =f (x) ;

y=f{x,z); 4>{x,y) = 0; f{x,y,z) = 0;

which are read :
" y equals the / function of x; y equals the

large F function otx; y equals the function oix; y equals

the /prime function of .t; y equals the /function of x and
z ; the function of x and y equals zero ; the / function of

X, y, and z equals zero;" or sometimes ^' y tz:^ f of x,

y = Fof X," etc. If we do not care to state precisely the

form of the function, we may read the above, "y = a func-

tion of a;
; ^ = a function of x and z ; a function of x and

p
= 0; a function of x, y, and z = 0."

For example, in the equation

y =: aa? + hx + c,

yis a function of x, and may be expressed, y =f(x).
Also, the equation

ax'^ + bxy + c?/^ =

may be expressed, f(x, y) — 0.

In like manner, the equations

y = aoi? + lo^z + c^,

and «/ = «a;2 + hxz + d'^,

may be expressed, y — f{x, z) and y = 4>{x, z).

Every function of a single variable may be represented geometri-

cally by the ordinate of a curve of which the variable is the cor-

responding abscissa. For if y be any function of x, and we assign

any value to x and find the corresponding value of y, these two values

may be regarded as the co-ordinates of a point which may be con-

structed. In the same way, any number of values may be assigned to

X, and the corresponding values of y found, and a series of points con-
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structed. These points make up a curve of whicli the variable ordi-

nate is y and the corresponding abscissa is. x.

In lilie manner it may be shown that a function of two variables

may be represented geometrically by the ordinate of a surface of which

tlie variables are the corresponding abscissas.

4. Algebraic and Transcendental Functions.—An
algebraic function is one in which the only operations indi-

cated are addition, subtraction, multiplication, division,

involution, and evolution; as,

{a + lx^Y; {^-hxy)^; ^-^^—-^--^.^ etc.

Transcendental functions are those v?hich involve other

operations, and are subdivided into trigonometric, circular,

logarithmic, and exponential.

A trigonometric function is one which involves sines, tan-

gents, cosines, etc., as variables. For example,

y ^= sm x; y = tan^ x; y = cos x sec x ; etc.

A circular function is one in which the concept is a

variable arc, as sin^^a;,* cos~i;c, sec~'^y, cot-^.T, etc., read,

•'' the arc whose sine is x, the arc whose cosine is x," etc. It

is the inverse of the trigonometric function ; thus, from the

trigonometric function, y = sina', we obtain the circular

function, x = sin^^ y. In the first function we think of the

• right line, the sine, the arc being given to tell us which sine

;

in the second we think of the arc, the sine being given to

tell us tohich arc. The circular functions are often called

inverse trigonometric functions.

* This notation was suEgestecl by the use of the negative exponents in algebra.

If wc have y = ax, v/e also have x = a~'y, vi'here yiss. function of a, and x is the

corresponding inverse function of y. It may be worth while to caution the begin-

ner against the error of supposing that sin-' y is equivalent to —.— ; while it is

true that «-' is equivalent to -
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A logantlimic function is one which involves logarithms

of the variables ; as,

y = \ogx; «/ = log Vfl! — a;;

f = Z\og^-^^^; etc.

An exponential function is one in which the variable

enters as an exponent ; as,

y =. aP; y = a;* ; u ^ '3^ ; etc.

5. Increasing and Decreasing Functions.—An in-

creasing function is one that increases when its variable

increases, and decreases when its variable decreases.

For example, in the equations

y = ai?, y = log x, y =: Va^ + 3?, y =. OP,

y is an increasing function of x.

A decreasing function is one that decreases when its

variable increases, and increases when its variable decreases.

Thus, in the equations

y = -, y ={a- xf, y = log -, x^ + y^ = r%

2/ is a decreasing function of x. In the expression,

y = {a- xf,

«/ is a decreasing function for 'all values of a; < «, but in-

creasing for all values > a. In the expression

y = sin x,

y is an increasing function for all values of x between 0°

and 90°, decreasing for all values of x between 90° and 270°,

and increasing for all values of x between 270° and 360°.
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6. Explicit and Implicit Functions.—An explicit

function is one whose value is directly expressed in terms of

the variable and constants.

For example, in the equations

y = {a — x)% y = Va* — x'^, ^ = "Zax^ — 3a;',

y is an explicit function of x.

An implicit function is one whose value is not directly

expressed in terms of the variables and constants.

For example, in the equations

y^ — Zaxy + a:^ = 4, x^ — 3xy + 2y — 16,

y is an implicit function of x, or x is an implicit function

of y. If we solve either equation with respect to y, we shall

have y as an explicit function of x ; also, if we solve for a;

we shall have x as an explicit function of y.

7. Continuous Functions.—A function of x is said to

be a continuous function of x, between the limits a and b,

when, for every value of x between these limits, the cor-

responding value of the function is finite, and when an

infinitely small change in the value of x produces only an

infinitely small change in the value of the function. If

these conditions are not fulfilled, the function is discon-

tinuous.

For example, both conditions are fulfilled in the equations

«/ = «a; + 6, «/ = sin x,

in which, as x changes, the value of the function also

changes, but changes gradually as x changes gradually, and

there is no abrupt passage from one value to another; if x

receives a very small change, the corresponding change in

the function of x is also very small.

The expression Vr^ — x^ is a continuous function of x

for all values of x between + r and — r, while Vx^ — /^

is discontinuous between the same limits.
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8. Infinites and Infinitesimals.—An infinite quantity,

or an infinite, is a quantity which is greater than any assign-

able quantity.

An infinitesimal is a quantity which is less than any

assignable quantity.

An infinite is not the largest possible quantity, nor is an infinitesi-

mal the smallest ; there would, in this case, be but one infinite or

infinitesimal. Influites may difEer from each other and from a quan-

tity which transcends every assignable quantity, that is, from absolute

infinity. So may infinitesimals differ from each other and from abso-

lute zero.

The terms infinite and infinitesimal are not applicable to quantities

in themselves considered, but only in their relation to each other, or to

a common standard. A magnitude which is infinitely great in com-

parison with a finite magnitude is said to be infinitely great. Also, a

magnitude which is infinitely small in comparison with a finite mag-

nitude is said to be infinitely small. Thus, the diameter of the earth

is very great in comparison with the length of one inch, but very small

in comparison with the distance of the earth from the pole star ; and

it would accordingly be represented by a very large or a very small

number, according to which of these distances is assumed as the unit

of comparison.

The symbols oo and are used to represent an infinite

and an infinitesimal respectively, the relation of which is

00 = ;r and =
00

The cipher is an abbreviation to denote an indefinitely small

quantity, or an infinitesimal—that is, a quantity which is less than

any assignable quantity—and does not mean absolute zero ; neither

does 00 express absolute infinity.

If a represents a finite quantity, and x an infinite, then

- is an infinitesimal. If x is an infinitesimal and a is finite,

X

^- is infinite; that is, the reciprocal of an infinite is infini-

X
tesimal, and the reciprocal of an infinitesimal is infinite.

A number is infinitely great in comparison with another,
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when no nwiiber can be found sufficiently large to express the

ratio between them. Thus, x is infinitely great in relation

to a, when no number can be found large enough to express

the quotient -• Also, a is infinitely small in relation tc x

when no number can be found small enough to express the

quotient -; x and - represent an infinite and an infini-

tesimal.

One mUlion in comparison with one millionth is a very large num-

ber, but not infinitely large, since the ratio of the first to the second

can be expressed in figures : it is one trillion ; though a very large

number, it is finite. So, also, one millionth in comparison with one

million is a very small number, but not infinitely small, since a num-

ber can be found small enough to express the ratio of the first to the

second : it is one trillionth, and therefore finite.
*

9. Orders of Infinites and Infinitesimals.—But even

though - is greater than any quantity to which we can

assign a value, we may suppose another quantity as large in

relation to « as a; is in relation to a : for, whatever the mag-

nitude of X, we may have the proportion

.. .=^ t

a ' '

m which — is as large in relation to a; aa « is in relation to
a

a, tor - will contain z as many times as x will contain «

;

hence, — may be regarded as an infinite of the second order,

- being an infinite of \h& first order.

•
(^

Also, even though - is less than any quantity to which.

we can assign a value, we may suppose another quantity as

small in relation to a as a is in relation to x ; for we may
have the proportion.
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X : a :: a : -

,

X

in which — is as small in relation to a as a is in relation to

v, for - is contained as many times in a as a is contained
X

m X ; hence, - may be regarded as an infinitesimal of the

second order, - being an infinitesimal oithB first order.

We may, again, suppose quantities infinitely greater and

infinitely less than these just named ; and so on indefinitely.

Thus, in the series

(Kx?, aa?, ax, a, -, ^, ^, etc.,

if we suppose a finite and x infinite, it is clear that any

term is infinitely small with respect to the one that imme-

diately precedes it, and infinitely large with respect to the

one that immediately follows it; that is, mfi, ax*, ax are

infinites of the third, second, and first orders, respectively

;

_j _^ — sxe infinitesimals of the ^rsf, second, and third

orders, respectively, while a is finite.

If two quantities, as x and y, are infinitesimals of the first

order, their product is an infinitesimal of the second order

;

for we have the proportion,

\ : X : : y : xy.

Hence, if x is infinitely small in relation to 1, xy is infinitely

small in relation to y; that is, it is an infinitesimal of the

second order when x and y are infinitesimals of the first

order.

Likewise, the product of two infinites of the first order is

an infinite of the second order.

The product of an infinite and an infinitesimal of the

same order is &,finite quantity. The product of an infinite
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and an infinitesimal of different orders is an infinite or an

infinitesimal, according as the order of the infinite is higher

or lower than that of the infinitesimal, and the order of the

product is the sum of the orders of the factors.

For example, in the expressions

the first product is finite; the second is an infinite of the

first order ; the third is an infinitesimal of the second order.

Though two quantities are each infinitely small, they may have any

ratio whatever.

Thus, if a and b are finite and x is infinite, the two quantities

- and - are infinitesimals; but their raiio is ;-> which is ^nte. In-XX *^

deed, two very small quantities may have a much larger ratio than

two very large quantities, for the value of a ratio depends on the rela-

tive, and not on the absolute magnitude of the terms of the ratio. The
ratio of the fraction one-piillionth to one-ten-miUionth \Bten, while the

ratio of one million to ten million is one-tenth. The latter numbers are

respectively a million times a million, and ten million times ten mil-

lion, times as great as the first, and yet the ratio of the last two is

only one-hundredth as great as the ratio of the first two.

Assume the series

10" ' (lOV ' .(io«) ' (icj ' \w) ' \w) '

^^

in which the first fraction is ontt-millionth, the second one-millionth

of the first, and so on. Now suppose the first fraction is one-millionth

of an ineli in length, which may be regarded as a very small quantity

of the first order; the second, being one-millionth of the first, must

be regarded as a small quantity of the second order, and so on. Now,

if we continue this series indefinitely, it is clear that we can make the

terms bepome as small as we please without ever reaching hbsolute zero.

It is also clear that, however small the terms of this series become, the

ratio of any term to the one that immediately follows it is one million.

10. Geometric Illustration of Infinitesimals.—The
following geometric results will help to illustrate the theory

of infinitesimals.
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Let A and B be two points on the

circumference of a circle ; draw tlie

diameter AE, and draw EB produced
to meet the tangent AD at D. Then,
as the triangles EAB and ADB are

similar, we have,

and

BE
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but BD is an infinitesimal of the second order (see above),

hence AD — AB is a?i infinitesimal of the third order.

In like manner it niay be shown that BD — BN is an

infinitesimal of iln.Q fourth order, and so on. [The student

who wishes further illustration is referred to Williamson's

Dif. Cal., p. 35, from which this was taken.]

11. Axioms.—Prom the nature of an infinite quantity,

a finite quantity can have no value when added to it, and

must therefore be dropped.

An infinitesimal can have no value when added to a finite

quantity, and must therefore be dropped.

If an infinite or an infinitesimal be multiplied or divided

by a finite quantity, its order is not changed.

If an expression involves the sum or difference of infinites

of different orders, its value is equal to the infinite of the

highest order, and all the others can have no value when
added to it, and must be dropped.

If an expression involves the sum or difference of infini-

tesimals of different orders, its value is equal to the

infinitesimal of the lowest order, and all the others can have

no value when added to it, and must be dropped.

These axioms are self-evident, and, therefore, axioms in the strict

sense. For example, suppose we were to compare the mass of the sun

with that of the earth : the latter weighs about six sextilliou tons, the •

former weighs about 355000 times as much. If a weight of one grain

were added to or subtracted from either, it would not affect the ratio

appreciably ; and yet the grain, compared with either, is finite—^it can

be expressed in figures, though on the verge of an infinitesimal. If

we divide this grain into a great many equal parts—a sextillion, for

instance—and add one of these parts to the sun or the earth, the error

of the ratio will be stUl less ; hence, when the subdivision is continued

indefinitely, it is evident that we may obtain a fraction leas than any

assignable quantity, Tumever small, which, when added to the sun or

the earth, will affect the above ratio by a quantity less than any to

which we can assign a value.

By reason of the terms that may be omitted, in virtue of the prin-

dples cojjtftined in th?s? axioms, the eijuation? formed i» tfee solutioi)
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of a problem will be greatly simplified. It may be remarked that in

the method of limits,* when exclusively adopted, it is usual to retain

infinitely small quantities of higher orders until the end of the calcu-

lation, and then to neglect them on proceeding to the limit ; while, in

the infinitesimal method, such quantities are neglected from the be-

ginning, from the knowledge that they cannot affect the final result,

as they necessarily disappear in the limit. The advantage derived

from neglecting these quantities will he evident when it is remem-

bered how much the difficulty in the solution of a problem is increased

when it is necessary to introduce into its equations the second, third,

and in general the higher powers of the quantities to be considered.

EXAMPLES.
3^ 4- ct

1. Find the value of the fraction -——-r, if x is infinite,

and a and b finite.

Since a and h are finite, they have no value in comparison
3x

with X, and must therefore be dropped, giving us -- = |
as the required value of the fraction.

2. Find the value of the fraction ^

—

-r—r , if « is infini-

tesimal, and a and b finite.

Since x is an infinitesimal, it has no value in comparison

with a and b, and must therefore be dropped, giving us —
^

for the required value of the fraction.

8a^ _l_ 2x
3. Find the value of -^-5—— , when x is infinite ; also

when X is infinitesimal.

Ans. "Vyhen x is infinite, 4; when infinitesimal, 2.

4. Find the value of —5-^ 5-^; -—
, when x is

mx^ + nx^ +px + q

infinite; and when infinitesimal.

Ans. When a; is infinite, — ; when infinitesimal, -•
m q

* For a discussion of limits, see Chapter III.
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ax'' 4- Zx^ 4- 3
5. Find the value of , . ,

——r , when x is infinite;
5a;* — 4a; + 1

and when infinitesimal.

Ans. When x is infinite, oo ; when infinitesimal, ?.

^ _. , ,

,

, „ 4a;* + 3a;2 + '3a; — 1 ,

6. Find the value of —tt-. r-5 s » when x is
3a;5 + 4kOi? + 2x

infinite ; and when infinitesimal.

Ans. When x is infinite, 0; when infinitesimal, oo.

7. Find the value of -7-=
, when x is infinite ; and,.„.,., 4a;3 _ fifx

when infinitesimal.

^«s. When x is infinite, 0; when infinitesimal, 7m.

8. Find the value of -r -„ , when a; is infinite ; and
V/jr fpA

-^

when infinitesimal.

^jjs. When x is infinite, oo; when infinitesimal, 0.

Ya; 2w
9. Find the value of j ^•- , when x and ?/ are infini-

tesimals. ^

Ans. We do not know, since the relation between x and^
is unknown.
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CHAPTER II

DIFFERENTIATION OF ALGEBRAIC AND. TRANSCEN-
DENTAL FUNCTIONS.

12. Increments and Differentials.—If any variable,

as X, be supposed to receive auy change, such change is

c^A&^Wi. increment ; this increment of x is usually denoted

by the notation Aic, read "difference x," or "delta x," vi^here

A is taken as an abbreviation of the word difference. If the

variable is increasing, the increment is + ; but if it is

decreasing, the increment is —

.

When the increment, or difference, is supposed infinitely

small, or an infinitesimal, it is called a differential, and is

represented by dx, read " differential x," where d is taken as

an abbreviation of the word differential, or infinitely small

difference. The symbols A and d, when prefixed to a varia-

ble or function, have not the effect of multiplication ; that

is, dx is not d times x, and Aa; is not A times x, but their

power is that of an operation performed on the quantity to

which they are prefixed.

If M be a function of x, and x becomes x+ ^x, the cor-

responding value of u is represented by m+ Am ; that is, the

increment of u corresponding to a finite increment of x is

denoted by Am, read "difference m."

If 2; becomes x+ dx, the corresponding value of n is rep-

resented hy u+ du; that is, the infinitely small increment

of u caused by an infinitely small increment in x, on which

u depends, .is denoted by du, read " differential u." Hence,

dx is the infinitesimal increment of x, or the infinitesimal

quantity by which x is increased; and du is the correspond-

ing infinitesimal increment of u.
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The differential du or dx is + or — according as the

variable is increasing or decreasing, i. e., the first value is

always to be taken from the second.

13. Consecutive Values.— Consecutive values of a

function or variable are values which differ from each other

by less than any assignable quantity.

Consecutive points are points nearer to each other than

any assignable distance.

Thus, if two points were one-millionth of an inch apart, they might

bj considered praotieaUyaa consecutive points ; and yet we might have

a million points between them, the distance between any two of which

would be a millionth of a millionth of an inch ; and so we might have

a million points between any two of these last points, and so on ; that

is, however close two points might be to each other, we could still

suppose any number of points between them.

A differential has been defined as an infinitely small in-

crement, or an infinitesimal; it may also be defined as the

difference between two consecutive values of a variable or

function. The difference is always found by taking the first

value from the second.

In the Differential Calculus, we investigate the relations

between the infinitesimal increments of variables from given

relations between finite values of those variables.

The operation of finding the differential of a function or

a variable is called differentiation.

14. Differentiation of the Algebraic Sum of a
Number of Functions.

Let u ^= V -{- y — z, (1)

in which u, v, y, z, are functions of x.*

* We might also, in a similar manner. And the differential of a flinction of sev-

eral variables ; butwe prefer to reserve the inquiry into the differentials of ftinctlons

of several variables for a later chapter, and confine ourselves at present to functions

of a single variable.
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Give to X the infinitesimal increment dx, and let du, dv,

dy, dz, be the corresponding infinitesimal increments of u,

V, y, z, due to the increment which x takes. Then (1)

becomes
ti + du = V + dv -^-y + dy — {z-\- dz). (2)

Subtracting (1) from (3), we have

du = dv + dy — dz, (3)

which is tJie differential required.

Therefore, the differential of the algebraie sum of

any number of functions is found by talcing the alge-

iraic sum of their differentials.

15. To Differentiate

y = ax ±b. (1)

Give to X the infinitesimal increment dx, and let dy be

the corresponding infinitesimal increment of y due to the

increment which x takes. Then (1) becomes

y + dy = a{x-\- dx) ±i. (3)

Subtracting (1) from (2), we get

dy = adx, (3)

which is the required differential.

Hence, the differential of the product of a constant

by a variable is equal to the constant multiplied by

the differential of the variable ; also, if a constant be

connected with a variable by the sign + or — , it dis-

appears in differentiation.

This may also be proved geometrically as follows

:

Let AB (Fig. 2) be the line whose equation is y = ax+ l,

and let {x, y) be any point P on this line. Give OM (= x)
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Fig. 2,

the infinitesimal increment MM' (= dx), then the cor-

responding increment of MP (=y)
will be CP' (= dy). Now in the tri-

angle OPP' we have

OP' = CPtanCPF;*

or letting a = tan CPP', and suhsti-

tuting for CP' and CP their values dy

and dx, we have,

dy = adx.

It is evident that the constant 6 will disappear in differentiation,

from the very nature of constants, which do not admit of increase, and

therefore can take no increment.

16. Differentiation of the Product of two Func-
tions.

Let u = yz, (1)

where y and z are both functions of x. Give x the infini-

tesimal increment dx, and let du, dy, dz be the correspond-

ing increments of u, y, and z, due to the increment which

X takes. Then (1) becomes

u + du = {y + dy) {z + dz)

= yz + zdy + ydz + dz dy^ (3)

Subtracting (1) from (3), and omitting dzdy, since it is

an infinitesimal of the second order, and added to others of

the first order (Art. 11), we have

du = zdy + ydz, (3)

which is the required differential

Hence, the differential of the product of two func-

tions is equal to the first into the differential of the

second, plus the second into the differential of the

first.

* In the Calculus as in the Analytic Geometry, the radius Is always regarded as

1, unless otherwise mentioned.
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17. Differentiation of the Product of any Num-
ber ofFunctions.

Let u = vyz, (1)

Then giving to x the infinitesimal increment dx, and letting

du, dv, dy, dz be the corresponding increments of u, v, y, z,

(1) becomes

u + du = (v + dv) (y + dy) {z, + dz), (2)

Subtracting (1) from (2), and omitting infinitesimals of

higher orders than the first, we have

du = yzdv { vz dy + vy dz, (3)

and so on for any number of functions.

Hence, the differential of the product of any num-
ber offunctions is equal to the sum of the products of
the differential of each into the product of all the

others.

CoE.—Dividing (3) by (1), we have

du dv dy
, dz ,,.— = — + -* H (4)% V y z ^ '

That is, if the differential of each function he di-

vided by the function itself, the sum of the quotients

mill be equal to the differential of the product of the

functions divided by the product.

18. Differentiation of a Fraction.

Let u = -,
y

then uy = X', (1)

therefore, by Art. 16, we have

udy + ydu = dx.

Substituting for u its value, we have
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X
- dy + ydu = dx.
d

Solving for du, we get

^„ ^ ydx-xdy \ .

which is the required differential.

Hence, the differential of a fraction is equal to the
denominator into the differential of the numerator,
minus the numerator into the differential of the de-

nominator, divided by the square of the denominator.

Cor. 1.—If the numerator be constant, the first term in

the differential vanishes, and we have

zdy
yi

Hence, the differential of a fraction with a constant

numerator is equal to minus the numerator into the

differential of the denominator divided by the square

of the denominator.

^" = - ^^^

CoE. 2.—If the denominator be constant, the second term

vanishes, and we have
, dx
du =: —

,

y

which is the same result we would get by applying the rule

of Art. 15.

19. Differentiation of any Power of a Single Va-

riable.

Let y = af.

lat. W%en n is a positive integer.

Regarding a?" as the product x, x, x, etc., of n equal fac-

tors, each equal to x, and applying the rule for differentiating

a product (Art. 17), we get
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dy = x"-^ dx + a;""' dx + a;""' dx -f etc., to n terms.

.•. dy = nT~^dx. (1)

2d. When n is a positive fraction.

Let y= X"

;

then y = a;".

Differentiating this as just shown, we have,

ny"-'^ dy = ?m"'~' &.

Therefore, dy = ——.dx^ n ^""'
'

m x"'~^y -= z—^^n y"-

m

—
t^i^ ^^ (since y" = a;"*).

m ™— 1

3d. When n is a negative exponent, integral or

fractional.

Let y = x~"

;

then V = —
" X"

Differentiating by Art. 18, Cor, 1, we have

dy^ ^^ = - n^"'^ <i^- (3)

Combining the results in (1), (2), and (3), we have the

following rule : The differential of any constant poiuer

of a variable is equal to the product of the exponent,
the variable with its exponent diminished by unity,

and the differential of the varidMe^
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Cob.—If w = ^, we have from (1),

dy = ^x^"^ dx = ^x'idx = —'—
2Vx

Hence, the differential of the square root of a varia-

bi?, is equal to the differential of the variable divided

hy tu/Cee the square root of the variable.

EXAMPLES.

1. Diff3r<5ntiate ^~9 + 2a; + a:^H- x^y^ — a;' + %axy.

By Art. 14, we cliferentiate each term separately, and

take the algebraic sum. By Art. 15, the constant 9 disap-

pearsip the differentiation ; and the differential of 2.-risthe

constant 2, multiplied by the differential of the variable x,

giving Mx. By Art. 19, the differential of x^ is 2x dx. The

term x^y^ is the product of two functions ; therefore, Art. 16,

its differential is o^d^f) -^y^dio?), which, Art. 19, gives

dx^y'^dy + '^y^xdx. In like manner proceed with the

other terms, giving the proper rule iu each case. The

apswer is

dy = 2dx + Sx^dx + Sxydy + 2xy^dx— 7x^dx

+ 2ax dy + 2ay dx.
.

2.
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7. u = ax^ + -i — ix^'

du = l^axi ; -\ dx.

8. y^ = 2px, to find the value of dy.
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1 + x , (l—'^x — x^)dx

16- y = ^r dy=--^,i

17. y = (aa? — s^f.

dy = 4: {aa? — x^Y {2ax — Za?) dx.

18. y = {a + lx^)k dy = ^{a + ba^)i hx dx.

i« a
J

&ax ,

20. 2/ = Va^ — flS (Art. 19, Cor.).

^2^ = -^ '-

2^2^ — a' 2\/a;^ — a»

(fl — x) dx
31. .y = 's/^ax — a"^. % =

V'2aa; — ai^

" 1 , xdx
22. 7/ = — • <?tf = J

/— /-5-T -F «^ + 3ca; ,

23. y = V fl.'s + V c^. <?y = 7=— aa;.

2va;

(2aa; + V) dx

25. y = (a:»+ a) (3a™! + 5) (Art. 16).

f?«/ = (a;3 + a) <? (3a;2 + 5) + (3a;2 +6) c? (a;' + a)

= (15a:* + 3Ja:^ + 6«a;) dx.

26. 2^ = (1 + 2a;2) (1 + ^^
dy = ix{l + 3x + 103^) dx.

^_^__ (a+3x)dx
27. y = {a-x)V^+^. ^y = -J^^'

{a—Zx) dx

38, y = {a^x)^/a-;v, dy = ^y^^j^
*
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ILLUSTRATIVE EXAMPLES.

1. In the parabola y^ — ix, which is increasing the most

rapidly at a; = 3, the abscissa or the. ordinate ? How does

the relative rate of change, vary_ as we recede from the ver-

tex ?
-'

' ..'- V."
'

- 2
Differentiating y^ = 4a;, we get dy = - dx, which shows

that if we give to x the infinitely small increment dx, the

2
corresponding increment of ^.is,- times as great; that is,

'"
'

'3
the ordinate chaijges - times as fast as the abscissa. At

a; = 3, we have y = ^/\'i. Hence, at this point,

dy = —-=^ dx = —— dx ;

•-"
_

Vl3 V3 /' .

that is; the ordinate is increasing a little over one-half as

fast as the abscissa at a; = 3.

At'x=zl, 2/ = 3, and dy = dx; that is, x and y are

increasing equally; in general, at the focus the abscissa and

ordinate of a.parabola are increasing equally. At a; = 4,

y = 4, and dy =? ^dx ; that is, y is increasing ^ as fast aa

X. At a; = 9, y = 6, and ,dy = ^x ; that is, y is increas-

ing J as fast as x. At a; = 36, y = 12, and dy^^dx;
that is, y is .increasing

-J-
as fast as x, and so on. We see

•

. 3 .4

from the equation dy = - dx, as well as from the figure of

the parabola, that the larger x becomes, and therefore y, the

less rapidly y increases, While x continues to increase uni-

formly.

3. If the side.of an equilateral triangle is increasing uni-

formly at the rate of ^ an inch per second, at what rate is

its altitude increasing ? Is the relative rate of increase pt

the ?Jd? ^nd altitude coR^taut or varif^b}^ 1
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Let a; = a side of the triangle and y = its altitude. Then

J^ — l^S and dy —~ dx, which shows that when x takes

the infinitely small increment dx, the corresponding incre-

-v/S
ment of y is -^ times as great; that is, the altitude y

a/3
always changes --- times as fast as the side x. When x is

increasing at the rate of | an inch per second, y is increas-

ing -g- times \, or -— inches per second.

3. A boy is running on a horizontal plane directly towards

the foot of a tower 60 feet in height. How much faster is

he nearing the foot than the top of the tower ? How far is

he from the foot of the tower when he is approaching it

twice, as fast as he is approaching the top ? When he is

100 feet from the foot of the tower, how much faster is he

approaching it than the top ?

Let X = the boy's distance from the foot of the tower,

and y^^ his digtance from the top. Then we have

y^ — x^-\- 60l

,-. dx ^=^dy

;

X

that is, the boy is nearing the foot ^ times as fast as he is

the top.

2d. When he is approaching the foot of the tower twice

as fast as he is the top, we have dx — 2dy, which in

dx = -dy

gives us y = 3a;, and this in y^ = t? + 60 gives us

—9 60 „, nA
3a;2 = 60^ or x = -— - 34.64,

V3
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3d. When lie is 100 feet from the foot.

y = \/lW + 60* = 116.63,

and ^ = "Toir '
^^"^^^ ^^ ^^ = ^^y gi^^s

dx = 1.1663 dy
;

that is, he is approaching the foot of the tower 1.1663 times

as fast as he is the top.

4. In the parabola y^ = 13a;, find the point at which the

ordinate and abscissa are increasing equally ; also the point

at which the ordinate is increasing half as fast as the

abscissa. Ans. The point (3, 6); and the point (13, 13).

5. If the side of an equilateral triangle is increasing uni-

formly at the rate of 3 inches per second, at what rate is the

altitude increasing. j^ns. a/3 inches per second.

6. If the side of an equilateral triangle is increasing uuir

ibrmly at the rate of 5 inches per second, at what rate is tin?

area increasing when the side is 10 feet ?

Ans. Ha/S sq. ft. per second.

7. A vessel is sailing northwest at the uniform rate of

10 miles per hour; at what rate is she making north lati-

tude? Ans. 1.Q7+ miles per hour.

8. A boy is running on a horizontal plane directly toward

the foot of a tower, at the rate of 5 miles per hour ; at what

rate is he approaching the top of the tower when he is 60

feet from the foot, the tower being 80 feet high ?

Ans. 3 miles per hour.
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LOGARITHMIC AND EXPONENTIAL FUNC-
TIONS.

20. To Differentiate y = log a;»—We have

y + dy = log (X + dx) = log [^(l +
^)J

= log2; + log(l + ^).

Subtracting, we have,

^y = log(l+f) = m(f-0 + etc.)

(from Algebra, where m is the modttltts of the system).

.-. dy = d (log z) = m^ (Art. 11).

This result may also be obtained as follows:

Let y = ax. (1)

.'. log «/ = log a + log iB. (3)

By Art. 15, dy — adx, (3)

and (Z (log y) = d (log »). (4)

Dividing (4) by (3), we get,

= ^i^^, from(l);

a;

d Qog y) _ JL.
''''

<? (log a;)
~

â;
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Multiply both terms of the second fraction by the arbi-

trary factor m, and we have

mdy
^ (log y) ^ JTl. ,5^

:id (log x). mdx ^ '

X

We may suppose m to have such a value as to make

d{\ogy) ^m-^;
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tions are different, and therefore the m in (7) is different

from the m in (9). Since m is a constant in the same sys-

tem and different for different systems, it varies with the

base of the system, as the only other quantities involved in

logarithms are the number and its logarithm. That is, m is

a function of the base; its value will be computed hereafter.

(See Rice and Johnson's Calculus, p. 39 ; also, Olney's Cal-

culus, p. 25.)

Hence, the dijferential of the logarithm of a quan-
tity is equal to the modulus of the system into the

dijferential of the quantity divided by the quantity.

Cor.—If the logarithm be taken in the Naperian * system,

the modulus is unity, and we have

dx

Hence, the differential of the logarithm of a quan-

tity in the Maperian system is equal to the differen-

tial of the quantity divided by the quantity.

21. To Differentiate y = «*=.

Passing to logarithms, we have,

log «/ = a; log a.

Differentiating, we have

m -^ = dx log a

;

y

y dx log a
or dy = m

dy = d {aP) = — log a dx.

* So called from the name of the inrentor of logarithms; also sometimes called

natural logarithms, from being those \i'hich occur first in the investigation of a

method of calculating logarithms. They are sometimes called Aj^erftoiic logarithms,

from having been originally derived from the hyperbola.
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Hence, the differential of an exponential function

with a constant base is equal to the function into the

logarithm of the base into the differential of the ex-

ponent, divided by the jnodulus.

CoK. 1.—If we take Naperian logarithms, we have

dy ^ d {a'^) = a'^ log a dx (since m = 1).

Cob. 3.—If a = e, the Naperian base, then

log a = log e = 1,

and therefore dy = d{(l^) = e^dz.

ScH.—In analytical investigations, the logarithms used

are almost exclusively Naperian, the base of which system

is represented by the letter e. Since the form of the differ-

ential is the simplest in the Naperian system, we shall in

all cases understand our logarithms to be Naperian, unless

otherwise stated.

22. To Differentiate u = y^.

Passing to logarithms, we have,

log M = a; log y.

DifEerentiating, we have,

du , , ,
(?w— = log ti dx + x-^

M , y

or, du = ?< log y dx + ux—;

.: du = y^ log y dx + a;«/*~' dy.

Hence, to differentiate an exponential function

with a variable base, differentiate first as though the

base were constant and the exponent variable, and
second as though the base were variable and the expo-

nent constant, and take the sum of the results.
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EXAMPLES.
1. y = x log X. dy = (log x + \) dx.

3. 2/ = log x\

3. y = a}-^'.

4. y = a^.

2dx

dy =

dy =
d"^' log a dx

dy = a^ e" log a dx.

Xf'dx,5. y = a?^. ^«/ = a^ loga;(l+loga;) + -

6. y z= log Vl — 3?. dy ^ —

7. y = log{x + Vl~+^).

-, xdx
iy = — -.—o-

1 — x^

dx

8. y = log (^^) = log (a + x)- log (a - x)

dy
2adx

a^ — a^

9. 2^ = logy^^ = ilog(l+a;)-ilog(l_a;).

, dx
^y = iz.-^-

10. y = log (log a;). % = &
X logJB

11. ^ = log^ X.

13. y — tP.

dy =.2 log a;—

•

dy = Xf^ (log a; + 1) dx.

13. 2^ = log
\/^+ 1 — x

< /
'v/^+ 1 + a;

Multiplying both terms by the numerator to rationalize

the denominator, we get
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^ = iog[-v/^Ti-«?.

.'. dy = —
Vx^ + 1

14. t/ — e^{x — 1). dy = ef^xdx.

15. y = ^ {x^ — ix + 2). dy = &'o^dx.

16. « = ——--• ay = — fe

17. y ^ ^ log a;. dy = ^ Hog a; + -) <?a;.

18. ^ = e'°8 V^^+^.

Then log y = log Va^ + «!*•

.•. y = '^c? + a^.

xdx

Va' + a?

,n e^" -, x^dx
1 + a: ^ (1 + a;)!

20. «/ = log • dy = —
.8

V^ + 1 + ^ ^ Va^ + 1

21. y = log(x+a+V2ax+x»). dy ,^ -;^^=-

23. 2^ = a:«i^~i. dy = aV^^x<^^^^-^dx.

23. Logeirithmic Differentiation.—When the function

to be differentiated consists of products and quotients, the

differentiation is often performed with greater facility by

first passing to logarithms. This process is called logarith-

mic differentiation.
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EXAMPLES.

1. M = a; («2 + x^) Va^ — xK

Passing to logarithms, we have

log u = log a; + log (a^ + x^) ^ \ log (a^ - x%
du _ dx 2x dx xdx— ~Z I"u X ' a? Jf-a? c? — x^

r a;^Ca^+a;2^n
.*. du = {a^+3^) \/d>-x''+ 2xWa^ -x^ — -7== dxL Vcr — x^ J

, a* + a?x^ — ix^
,or, du = ;

— dx.
^/a^ — x^

1 + a?^

2. u = 5- Passing to logarithms, we have
J. ^^ w

log u = log (1 + x^) — log (1 — a;2).

du 2xdx 2xdx Axdx

du =

l+x^ ^ l—x^~ {l+x^){l—a?)

4xdx
1 — x^

3. u = (a'' + 1)2. du = 2a'>'{a'' + 1) log a dx.

4 ,,
- ^''-l _ 2a^ log a dx

„ Vl + X , dx
0. ti = -

, du =
Vl — x (1 - «) Vl — a^

ILLUSTRATIVE EXAMPLES.

1. Which increases the more rapidly, a number or its

logarithm ? How much more rapidly is the number 4238

increasing than its common logarithm, supposing the two

to be increasing uniformly ? While the number increases

by 1, how much will itg logarithm increase, supposing the
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latter to increase uniformly (which it does not) while the

number increases uniformly.

Let X = the number, and y its logarithm ; then we have

y = log a;;

.•. dy = — dx,

which shows that if we give to the number (a;) the infinitely

small increment (dx), the corresponding increment of y is

— times as great; that is, the logarithm (y) is increasing
it

— times as fast as the number. Hence, the increase in the
X
common logarithm of a number is >, =, < the increase

of the number, according as the number {x) <, =, > the

modulus (m).

When X = 4238, we have

m , .43439448 ^
^^ = 4238^* = -1338- ^^^5

4338
hence, dx =

j^gj^gilg
^y = ^^^^^ ^^^^ ^^5

that is, the increment of the logarithm is
'-—

j^ot.— part of

the increment of the number, and the number is increasing

about 9758 times as fast as its logarithm.

While the number increases by 1 , its logarithm will in-

crease (supposing it to increase uniformly with the number)

.43439448 ^.^^^ ^ _ _oooi0347; that is, the logarithm of

4339 would be .00010247 larger than the logarithm of 4238,

if it were increasing uniformly, while the number increased

from 4238 to 4339.

Besiabk.—While a number is increasing uniformly, its logarithm

is increasing more and more sloidy ; this is evident from the equation

iy = — dx, whicli shows that if the nuwher reoeiveg a very small in.
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crement, its logaritliin receives a very small uicrement ; but on giving

to the number a second very small increment equal to the first, the

corresponding increment of the logarithm is a little less than the first,

and so on ; and yet the supposition that the relative rate of change of

a number audits logarithm is constant for comparatively small changes

in the number is sufficiently accurate for practical purposes, and is the

assumption made in using the tabular difference in the tables of loga-

rithms.

2. The common logarithm of 337 is 2.514548. What is

the logarithm of 327.12, supposing the relative rate of

change of the number and its logarithm to continue uni-

formly the same from 327 to 327.12 that it is at 327 ?

Ans. 2.514707.

3. Find what should be the tabular difference in the table

of logarithms for numbers between 4825 and 4826 ; in other

words, find the increment of the logarithm while the num-

ber increases from 4825 to 4826. Ans. .0000900.

4. Find what should be the tabular difference in the table

of logarithms for numbers between 9651 and 9652.

Ans. .0000450.

5. Find what should be the tabular difference in the table

of logarithms for numbers between 7235 and 7236.

Ans. .0000601.

TRIGONOMETRIC FUNCTIONS.

24. To Differentiate y — sin x. (1)

Give to X the infinitely small increment dx, and let dy

represent the corresponding increment of y ; then we have

y + dy = sin {x + dx)

= sin X cos dx + cos x sin dx. (2)

Because the arc dx is infinitely small, its sine is equal to

the arc itself and its cosine equals 1 ; therefore (2) may be

written
y,-{- dy — siiv a; + cos a; dx. (3)
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Subtracting (1) from (3), we have

dy = cos X dx. (4)

Hence, the differential of the sine of an arc is equal

to the cosine of the arc into the differential of the arc,

25. To Differentiate y = cos x.

Give to X the infinitely small increment dx, and we have

y -\- dy = cos {x + dx)

= cos X cos dx — sin x sin dx

= cos a; — sin x dx (Art. 34).

.'. dy =z — sin x dx.

Otherwise thus:

We have y =z cos x z= sin (90° — x).

Differentiating by Art. 24, we have

d^= cos (90° — x)d (90° — x)

= sin X d (90° — x).

.: dy — i
— sin a; dx.

Hence, the differencial of the cosine of an arc is

negative and equal to the sine of the arp into the dif-

ferential of the arc. (The negative sign shows that the

cosine decreases as the arc increases.)

26. To Differentiate y = tan x.

We have y = tan x =

gbyA:

dy —

cos^

Differentiating by Arts. 18, 34, and 25, we have

cos X dsinx — smx d cos x

cos^ X

cos^ X + sin' X ^ dxdx ==
cos' X cos' X

s; sec' X dx. .: dy = see' z (?^,
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Otherwise thus:

Give to X the infinitesimal increment dx, and we have

y + dy = tan {x + dx)

.'. dy = tan {x + dx) — tan x

tan X + tan cZa;

tan X tan (^a;

— tan X

tan a; + & . , . , , , .= -1 7
, tan X (since tan dx = dx)

1 — tan X dx ^ '

dx + tan' X dx » ,= : r— = sec^ X dx
1 — tan X dx

(since tan x dx, being an infinitesimal, may be dropped from

the denominator).

.•. dy = sec* x dx.

Hence, the differential of the tangent of an arc is"-

equal to the square of the secant of the arc into the

differential of the are. <

27. To Differentiate y = cot .-51?.

We have «/ = cot « = tan (90° — x).

.: dy = see' (90° — x) d (90° — x).

.: dy = — cosec' x dx.

The minus sign shows that the cotangent decreases as the arc

increases.

Hence, the differential of the cotangent of an arc is

negative, and equal to the square of the cosecant of

the arc into the differential of the arc.

28. To Differentiate y — sec x,

1
We have y = sec a; =

cos X
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d COS x smx dx
.-. aw = 5— = — = sec X tan x dx.^

cos^ X cos^ X

Hence, the differential of the secant of an arc is

equal to the secant of the same arc, into the tangent

of the arc, into the differential of the arc.

29. To Differentiate y = cosec x.

"We have y = cosec x = sec (90° — x).

.: dy = d sec (90° — x)

= sec (90° — x) tan (90° —x)d (90° — x)

= — cosec X cot X dx.

Hence, the differential of the cosecant of an arc is

negative, and equal to the cosecant of the arc, into the

cotangent of the arc, into the differential of the arc.

30. To Differentiate ij — vers x.

We have y = vers a; = 1 — cos x.

.: dy = d{l — cos x) = sin x dx.

Hence, the differential of the versed-sine of an arc

is equal to the sine of the arc into the differential of
the arc.

31. To Differentiate y = covers x.

We have y = covers x — vers (90° — x),

.: dy = d vers (90° —x) = sin (90° — x)d (90° — x)

= — cos a; dx.

Hence, the differential of the coversed-sine of an
arc is negative, and equal to the cosine of the arc into

the differential of the arc.
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32. Geometric Demonstration
at in the preceding Articles

admit also of easy demonstra-

tion by geometric construction.

Let P and Q be two consec-

ntive points* in the arc of a

circle described with radius = 1.

Let X = arc AP ; then

dx = arc PQ.

From the figure we have,

PM = sin x;

-The results arrived

/T'

Fig. 4.

NQ = sin {x + dx)

;

:. QE = d sin x.

OM =: COS a;

;

ON = cos {x + dx)

;

.'. NM = — d cos X (minus because decreasing).

AT = tan x; AT' = tan {x + dx)

;

.: TT' = d tan x.

OT = sec a;; OT' = sec {x + dx)
;

.-. DT' = d sec X.

Now, since EP and QP are perpendicular respectively to

MP and OP, and since DT and TT' are also perpendicular

to OT and OA respectively, the two infinitely small triangles

PQE and DTT' are similar to MOP. Hence we have the

following equations

:

<Z sin a; = EQ = QP cos PQE
= cos X dx.

.'. d sin x = cos x dx.

* All that is meant here is that P and Q are to be reasoned upon as though they

were consecutive points ; of course, strictly spei^kiug, consecutive points can never

be represented geometrically^ since their distance apart is less than any assignable

distance. When we say that P and Q ave consecutive points, we may regard the

distance PQ in the figure as representing the infinitesimal distance between two

consecutive points, highly magnijied.
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dcosx = — PE = — PQ sin PQE
= — sin X d%.

.'. d cos X = — sin 2; dx.

dtmx = TT' = DT sec DTT' = DT sec x

= OT-QP sec x (since DT = OT-QP)

= sec' X dx.

.'. d tan X = sec' x dx.

dsecx = DT' = DT tan DTT'

= OT-QP tan x = sec a; tana; dx.

.: d sec X ^ sec x tan x dx.

Also, ch = — d (cot x),

and cd ^ — <?(cosec x).

But the triangle cid is similar to the triangle 0PM, since

ch and db are respectively perpendicular to MP and OP.

Hence we have

d cot X = —ch= —db cosec deb

= ~-bO- QP cosec x = — cosec' x dx.

.'. d cot X = — cosec' x dx.

d cosec a; = — c^ = — db cot deb

— _05-QPcota;
= — cosec x cot X dx.

.: d cosec a; = — cosec a; cot a; dx.

From the figure we see that the differential of the versed-

sine is the same numerically as that of the cosine, but with

a contrary sign, i. e., as the versed-sine increases the cosine

decreases ; also the differential of the coversed-sine has the

same value numerically as that of the sine.
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EXAMPLES.

1. y z=. sin mx. By Art. 34 we have,

dy — cos mx d (mx) = m cos mx dx.

3. y =^ sin {x^).

dy = cos {x^) d{x^) = 3a; cos (a;') ^a;.

3. ^ = sin"* X.

dy ^ m sin"~' a; (Z (sin a;) = m sin""' a; cos x dx.

4. ^ = cos* X.

dy z= 3 cos' a; (?(cosa;) ^ — 3 cop' a; sin a; c?a;

= 3 (sin^ X — sin x) dx.

5. ^ = sin 3a; cos x.

dy = sin 3a; <? cos a; + cos x d sin 3a;

= — sin 3a; sin x dx + 2 cos 3a; cos x dx.

6. y = cot' (a;^). dy =^ — 6a;' cot a;* cosec' a;' dx.

7. «/ = sin* a; cos a;, dy = sin' a; (3 — 4 sin' x) dx.

8. 2/ = 3 sin* X. dy = 13 sin* x cos a; c?a;.

9. y = sec' 5a;. <?«/ = 10 sec' 5x tan 5x dx.

10. ^ = log sin X.

d (sin a;) , . , „ ., cos a; , , ,
t^w = —^ (Art. 30) = -^— dx = cot a; dx.
^ sm a; ^ ' sm a;

11, ^ = log (sin' a;) = 3 log sin x. dy = 2 cot x dx.

13. y = log cos X.

13. ^ = log tan X.

14. 2/ = l^'g ^'^^ ^"

15. y = log sec X.

16. y = log cosec a;.

dy =
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17 —
1

A + COS X
^ ~ *^^V 1 — COS a;

= ^ log (1 + cos x) —^ log (1 — cos x).

, dx
dy = —

sm X

18. y = d^ cos a;. dy =. ^ d cos a; + cos a; rfe'*

= — e^" sin a; rfa; + e* cos a; dx

— fP' (cos a; — sin x) dx.

19. y = X sin a; + cos x. dy — x cos a; tZa;.

30. y = a;e°™ '. dy = e"" ' (1 — a; sin x) dx.

31. «/ = e"" ' sin a;. £?«/ = e"" ' (cos a; — sin^ x) dx.

33. y = log Vsin a; + log Vcos x

= \ log sin a; + |- log cos x.

.: dy ^ ^ (cot x — tan x) dx = cot 3a; dx.

33. «/ = log (cos X + V'— 1 sin x). dy = V^^ dx.

n. , /l + sin X
, dx

34. 2, = log^^—^j^. dy =

35. 2/ = log tan (45° + ^x). dy =

36. y = sin (log x). dy — - cos (log x) dx.

ILLUSTRATIVE EXAMPLES.

1. Which increases faster, the arc or its tangent ? When
is this difference least, and when greatest? What is the

value of the arc when the tangent is increasing twice as

fast as the arc, and when increasing four times as fast as the

arc?

From y = tan x, we get dy = sec^ x dx, which shows

that if we give to the arc (x) the infinitesimal increment dx,

cos X

dx

cos X
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the corresponding increment of the tangent {y) is sec'a;

times as great ; that is, the tangent («/) is increasing secant
square times as fast as the arc, and hence is generally in-

creasing more rapidly than the arc. When a; = 0, sec a;= 1

;

therefore, at this point, the tangent and the arc are increas-

ing at the same rate. When x = 90°, the secant is infinite

;

therefore, at this point, the tangent is increasing infinitely

faster than the arc.

When the tangent is increasing twice as fast as the arc,

we have dy = 2dx, or bqc?x = %, which gives a; = 45°

;

hence at 45° the tangent is increasing twice as fast as the

arc.

When the tangent is increasing four times as fast as the

arc, we have dy = Mx, or sec^ a; = 4, which gives x = 60°

;

hence at 60° the tangent is increasing four times as fast as

the arc.

2. Assuming that the relative rate of increase of the sine,

as compared with the arc, remains constantly the same as

at 60°, how much does the sine increase wh«n the arc in-

creases from 60° to 60° 20'.

Let X = the arc and y its sine ; then we have y = sin x,

.: dy = cos xdx, which shows that the increment of the

sine is cosine times the increment of the arc. Now the arc

of 20' =
, ;^ " = .0058177 = dx; therefore,
180 X 3

dy = cos 60° dx = ix .0058176 = .0029088,

which is the increase of the sine on the above supposition,

and is a little greater than the increase as found from a table

of natural sines, as it should be, since we have supposed the

sine to increase uniformly while the arc was increasing

uniformly from 60° to 60° 20', whereas the sine is increasing

more and more slowly while the arc is increasing uniformly.

This is evident from the equation dy = cos xdx, and also

from geometric considerations.
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3. The natural cosine of 5° 31' is .995368. Assuming

that the relative rate of change of the cosine and the arc

remains the same as at this point, while the arc increases to

5° 33', what is the cosine of 5° 32' ? Ans. .995340.

4. The logarithmic sine of 13° 49' is 9.3780633. Assum-

ing that the relative rate of change of the logarithmic sine

and the arc remains the same as at this point, while the arc

increases to 13° 49' 10", what is the logarithmic sine of

13° 49' 10"? Jw.<!. 9.3781489.

5. The log cot 58° 31' = 9.789863. On the same sup-

position as above, what is the decrease of this logarithm for

1 second increase of arc. Ans. .00000471.

6. A wheel is revolving in a vertical plane about a fixed

centre. At what rate, as compared with its angular velocity,

is a point in its circumference ascending, when it is 60°

above the horizontal plane through the centre of motion.

Ans. Half as fast

CIRCULAR FUNCTIONS.

33. To Differentiate y = sin"^ oc.*

We have a; = sin «/

;

therefore, dx = cos y dy = ^(1 — sin^^ y) dy

= Vl — ^ dy.

dx

34. To Differentiate y = cosr^ x.

We have, x = cos y ;

therefore, dx ^ — sin y dy ^ — Vl — cos'j/ dy

= —^/l — x^ dy.

.: dy = , = = d (cos~i x).^ Vl-x>

* This notation, as already explained, means y = the arc whose sine is x.
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35. To Differentiate y = tan-' x.

We have z = tan y

;

therefore, dx = sec^y dy — {1 + tan^ y) dy

= (1 + a;«) dy.

.'. dy = 5 = d (tan"* x).
" 1 + a;^

^ ^

36. To Differentiate y = cot~^ a;.

We have x = cot ^

;

therefore, dx=: — cosed^ydy = — (1 + cot^ y) dy

= - (1 + x^) dy.

.: dy=— —^3 = d (cot-i x).

37. To Differentiate y = sec~' x.

We have x = sec y;

therefore, dx = sec y tan y dy = aec y Vsec' y — 1 dy

dx , , 1 \
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39. To Differentiate y = vers"' x.

We have x = vers y

;

therefore, dx = sin y dy ^ Vl — cos^ y i

= Vl — (1 — vers yY dy

= -v/^ vers y — vers^ y dy

= VSa; — a:^ (?y.

.-. (?w = —
.
= ^(vers~ia;).

^/'Hx-a?

40. To Differentiate y = covers"' x.

We have x = covers y

;

therefore, dx = — cos?^ dy = — Vl — mi?y dy

= — Vl — (1 — covers y'f dy

= — V^ covers y — covers* y <?«/

= — 's/%x — x^ dy.

.*. dy = — = d (covers"! x).
y%x~ ar*

EXAMPLES.

1. Differentiate w = sin~' -•
^ a

We have, by Art. 33,

,a; &
^ a a dx
dy =

L a?- L x^ V«^ -a:8

3J

3, Differentiate ii' = a sin~' —^ a
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dx
a—-

Wehave, Art. 33, dy'--

49

adx

^- V â" -^x'

Geometric illustration of Examples 1 and 2

:

Let 0A = 1, OA' = a, y = arc AB, y=arcA'B',
X = M'B'.

Now
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14. y =z a cosec~i —
a

dx

dy= " «'^^

X Ix* cB-y/a-a — ^8

dx
«—

ie _i ^ 7 Oj adx
15. y — a vers 1 -• dy =—- =: —

a / ^ ^2 V2ax — s?

16. y ^ a coTers"^ - •

a
dx

V~''a-
0^ V^aX — 3?

MISCELLANEOUS EXAMPLES.

, a -\- X , 3a — X ^
1. y = =• dy = ^dx.

Va — X 2{a — x)^

2. y — y X — Vic? — a;^.

, _ (a; + \/a*—l^dx
^ ~ 2Va^ — x>{x — V^"^^^*'

„ a; , dx

4. 2/

+ Vl - a;^
2a; (1 — a;''') + Vl - ar*

V(l — a;3)s -^ (1— a;2)t

a* , — a«(a2-3a;2)<?a;

3y'a2a;3_a4 ^ 2a;2(a2-a;2)^
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Vx^ + 1 — X
Q. y =

Va;^ + 1 + x

In fractions of this form, the student will find it an ad-

vantage to rationalize the denominator, by multiplying both

terms of the fraction by the complementary surdform ; that

is, in the present case, by V^^ + 1 — a^- Thus,

_ _ Vx^ + 1 — a; V^^ + 1 — a;

Va;' +1 + x Vx^ + 1 — X

(Va^ + l—xY

= 2(2x-^^±L]dx.

dx

7. y
y 1 + Vx

1 _ v« Vi _ v^ a/1 X

dy =

a/1 _I_ rr: J_ 1/

8. 2/ =

+ Va; Vi + v^ 1 + Va;

<?a;

2 (l + Va;) Vx — a;2

-v/l + a; + -v/l — a;

Vl + a; — Vl — a;

l + Vl-a;2,
aw = 5—

:

cZa;.

9. 2/ = -v/a; • y Vx + 1.

, 7\/5 + 4
a«/ = dx.
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10. y = \/

3b 4a;

V 'Vx

11. y = \/ 2x—l—\/2x—l—V2x—l— etc., ad inf.

Squaring, we have,

:^2x—1—y ^x—l—y^x—l— '\/2x—l— etc., ad inf.

y» =z2x — l — y;Hence,

and

••• dy = ±

= - I ± iV8a; - 3.

Mx
VSa: —

3

12. 2^ = Vl +X^ + Vl — :

VT+ a;3 — Vl — a?

<?2/ = --1^1 +-—-"l &.

13. «/ = log
Vi+"

<z^ = cZa;

\/l + a; + a/1 — « 7

14. 2/ = log ,,
7==^- ^2/ =

Vl + a; — Vl — a;

a; (1 + a;2)

15. y = log
Va^ + a^ — x

dx
,

<?a;

^2/ = ^ +
^ ^Jx^ H- ««
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16. y = log [a/1 + x> + VI - a;'].

rfa; dx
dy

X Xa^\ _ a4

17. 2/ = log(a;-«)--^^-^. dy = j^^j^dx.

18. y = ai"'.
^

c?^ = 3a'»' log a xdx.

19. y = e"' (1 — a^), <??/ = (f{l — 33?— a?) dx.

e^ — 0-^ , Mx
80. y = — -• dy =

,2

gK g-a
21. y = log (e^' + e-"). dy = -^-^Jx.

J- T i«^(l — log ^) 7

33. y = ar". £?«/ = —^^ j-^"^ <^«'

33. y = 2e ^(a;t - 3a; + 6a;J - 6). dy = a;e ^^a^.

34. y = ^^^ r (See Art. 33.)
^ (x- 3)t (^ _ 3)*

(._l)l(y^ + 30^97),^.
13 (a: - 3)^ (a; - 3)V

a;2(a; + 3)^t?a;% = ^^ V
{x + 3)5 (x + 1)5

36. w = —;—;==• dy=z-^—;

—

7=
37. y = sin a; — ^ sin' z. dy = cos' x dx.

38. y = i tan' a; — tan x + x. dy = tan* a; rfar.

39. y = \ tan' a; + tan x. dy = sec* x dx.
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30. y z= sin e». dy = e^ cos e'" dx.

31. y = tan^ X + log (cos^cc). dy = % tan' a; ofa;.

32. y = log (tan x + sec x). dy = sec a; dx.

Qo sin a; (cos' x — sin' a;) ,

1 + tan a; -^ (sin x + cos a;)^

„

.

, /a cos a;

34. V = loff -V /^ V a cos a;

b sin a:

+ b sin a:

-, — ab dx
dy =

a? cos^ x — 5^ sin^ a;

J. X.

35. y = tan e*. % = 3

„/. . . r, , (sec'^Vl — x) dx
36. « = tan y 1 — a;. £?« = — ^^ '—
37. 2/ = a;"° '- dy = a:"" "^ [cos a; • log a; + ^^^ dx.

no ^ 3 cos a; „ T x
38. y =^ ^^ h 3 log tan -•

^ sm^ a; cos a; sin^ x ° 2

, 2dx
dy =

sin' a; cos^a;

39. y = sin-i —=^-=-

We have, rf^ = rf (;^^j==) -^ y^l _

-

+ a;2

dx 1 <?a;

(1 + a;2)t (1 + a;2)4 1 + ^'

40. ^ = co8~* X Vl — a;' = cos"^ Va** — a^.

We have, ~ dy = — d y/x^ — a^ -=- Vl — (a:' — a;^)

_ (1 — 2a:2) rfa;^__ ^vnr^^T^.
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(1 — 2a^) dx
.'. dy =

Vjr^ a?) {1 — a^ + x^)

2dx
41. y = sin-i(3a; Vl — x^). dy = ^j-^^'

3dx
42. y = sin-i (3a; — ia^. dy = —

V 1 — 3!*

2x , Mx
43.

2' = *^°"'rir^- '^y = YT^-

44. M = sin~i 5—-—5- dy = — :{—t—s-^ 1 + x^
"

1 + a*

45. a; = vers"' y — y2ry — ^* (where vers~^^ is taken

to radius r).

We may write this (see Art. 40, Exs. 1 and 3),

y
V */ y

— ydy

X z= r vers~i - — ^2ry — y^.

dx
^/^ry — y^ y/^ry — y^

_ ydy

'>J%ry — y*

46. y = x's/a^—7?+a^ sin-i -• dy = li.'ija^—ifidx.

4/r+ X , , , , dx
47. ^ = logy j^-^3^ + i tan-i a;. dy = r^—-^-

, 3a; , dx
48. y = ymr^-^' dy =

•v/9a; — a;*
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60. y — af'°" '.

dy = a;""""

51. y = sec~* nx.

h%. y = sin~i

'x log a; + (1 — x^)^ sin~^ a;"

a: (1 — a;'*)^

, dx
dy =

dx.

^Vn^x^ — 1

adx

Va^ + X

53. y = siu~i Vsin a;.

:. y = tan-iy

-

54.
— cos X

+ COS a;

a^ + x^

dy = ^(Vl + cosec x)dx.

dy = \dx.

55. y = —p=z==. + log V 1 — a;^ ay = sin~^ X

Vl —a;!

56. y z= {x + a) tan~i A / Vi

57. y = sec~i
^

58. y = tan~i

59. y = sm~i

ca/5

^Va;^ + a; — 1

3a^a! — a:^

a* — 3aa;^

a;A/a — i

(l-a;2)

fla;.

% =

<Za;.

dx.

dx

dy =

^Va^+a; —

1

3a<?a;

a« + a^

Va (1 + x^)

dy — Va-
-.dx.

(1 + 3?) Va + hx^

60. If two bodies start together from the extremity of the

diameter of a circle, the one moving uniformly along the

diameter at the rate of 10 feet per second, and the other in

the circumference with a variable velocity so as to keep it

always directly above the former, what is its velocity in the
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circumference when passing the sixtieth degree from the

starting-point? ^ 30 „ ,
,

" -^ Ans. —- feet per second.

a/3

61. If two bodies start together from the extremity of the

diameter of a circle, the one moving uniformly along the

tangent at the rate of 10 feet per second, and the other in

the circumference with a variable velocity, so as to be always

in the right line joining the first body with the centre of

the circle, what is its velocity when passing the forty-fifth

degree from the starting-point. Ans. 5 ft. per second.



CHAPTER III

LIMITS AND DERIVED FUNCTIONS.

41. Limiting Values.—The rules for differentiation

have been deduced, in Chapter II, in accordance with the

method of infinitesimals explained in Chapter I. We shall

now deduce these rules by the method of limits^

The limit, or limiting value of a function, is that value

toward which the function continually approaches, till it

differs from it by less than any assignable quantity, while

the independent variable approaches some assigned value.

If the assigned value of the independent variable be zero,

the limit is called the inferior limit ; and if the value be

infinity, it is called the superior limit.

42. Algebraic Illustration.—Take the example,

_ 1

y - 1+x'

and consider the series of values which y assumes when x

has assigned to it different positive values. When a; = 0,

^ = 1, and when x has any positive value, y is a, positive

proper fraction ; as x increases, y decreases, and can be made

smaller than any assignable fraction, however small, hy giv-

ing to X a value sufficiently great. Thus, if we wish y to be

less than i(,(,\(,a(,> 'we make x — 1000000, and get

_ 1

y — 1 + 1000000

which is less than ^^aoooo - If "^^ ^ish y to be less than

one-trillionth, we make x = 1000000000000, aiid the re-

quired result is obtained. We see that, however great x

maj be taken, y can never become zero, though it may be
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made to differ from it by as small a quantity as we please.

Hence, the limit of the function ——- is zero when x is

infinite.

We are accustomed to speak of such expressions thus

:

"When X is infinite, y equals zero." But both parts of this

sentence are abbreviations: "When x is infinite" means,
" When X is continually increased indefinitely," and not,

" When X is absolute infinity ;" and " y equals zero " means

strictly, "y can be made to differ from zero by as small a

quantity as we please." Under these circupstances, we say,

" the limit of y, when x increases indefinitely, is zero."

43. Trigonometric Illustration—An excellent exam-

ple of a limit is found in Trigonometry. To find the values

of 7—2 and —^ , when diminishes indefinitely. Here

we have

7—^ = eosO ; and when = 0, cos 6 = 1.
tan 6

Hence, if 6 be diminished indefinitely, the fraction 7

—

^

will approach as near as we please to unity. In other

words, the limit of 7—5, as d continually diminishes, is

unity. We usually express this by saying, " The limit of

sin , „ „ . ., „ "sine , , „ „„^^,whene = 0,isumty;' or, —- = 1, when = 0;"

that is, we use the words " when 6 = 0" as an abbreviation

for " when d is continually diminished toward zero."

Since 7

—

a = 1» vj^qvl 6 = 0,
tan d

we have also -;

—

„ = 1, when = 0,
em
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It is evident, from geometric considerations, that if be

the circular measure of an angle, we have

tan (? > > sin0;

or.
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44. Derivatives.—The ratio of the increment of u to

that of X, when the increments are finite, is denoted by—

;

the ratio of the increment of u to that of x in the limit,

i. e., when both are infinitely small, is denoted by y , and

is called the derivative * of m with respect to x.

Thus, let u =f{x) ; and let x take the increment h

(= Ak), becoming x + h, while u takes the corresponding

increment Ati ; then we have,

11 \- l^u = f(_x + h);

therefore, by subtraction, we have

Mt=f{x + }i)-f{x);

and dividing by A (= Aa;), we get

AM _f(x + h)—f {x)

Ax- ~h ' ^^^

It may seem superfluous to use both A and t^x to denote the" same

thing, but in finding the limit of the second member, it will sometimes

be necessary to perform several transformations, and therefore a sin-

gle letter is more convenient. In the first member, we use Aa on

account of symmetry.

The, limiting value of the expression in (1), when h
is infinitely small, is called the derivative of u or

f{x) with respect to x, and is denoted by f (.x).

Therefore, passing to the limit, by making A diminish

indefinitely, the second member of (1) becomes /' (x), and

the first member becomes, at the same time, -r- ; hence we
,

dx
have

Called »l80 the derinedfunction and the differential coe^lcierit,
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45. Differential and Differential Coefficient.

Let M = /(a;) ; then, as we have (Art. 44),

we have du = df{x) =f (x) dx,

where dx and du are regarded as being infinitely small, and

are called respectively (Art. 12) the differential of x and the

corresponding differential of u.

f {x), which represents the ratio of the differential of the

function to that of the variable, and called the derivative of

f{x) (Art. 44), is also called the differential coefficient of

f{x), because it is the coeflBcient of dx in the differential

oifix).

Some writers * consider tlie symbol — only as a wTiole, and do not

assign a separate meaning to du and dx ; others.f who also consider

tlie symbol -=- only as a whole, regard it simply as a convenient nota-

tion to represent ^ , and claim that du and dx are each absolutely zero.

46. Differentiation of the Algebraic Sum of a

Number of Functions.

Let y = au + iv + ctv + z + etc.,

in which y, u, v, w, and z are functions of x. Suppose that

when X takes the increment A (= Aa;), y, u, v, w, and z

take the increments Ay, Am, C^v, Aw, A2. Then we have,

y+ C^y = a {u-\- ^u) + b (t; -f- At') + c (w+ Aw) + (2+ Az) -f etc.

.•. Ay = a Am + 5 Af + c Aw + Az + etc.

Dividing by Ji or Ace, we have

* See Todhunter's Dif. Cal., p. 17 ; also De Morgan's Calculus, p. 14, etc.

t See Young's Dif. Cal., p. 4.
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Aw Am
,

,A!; ,
Mu . A^ , .—^ = a { i he 1 h etc.,

^x Aa; Ak AiB Aa;

wliicli becomes in the limit, when h is infinitely small

(Art. 12),

dy du ^ dv dw ,
dz

, , , « i ij\

47. Differentiation of the Product of two Func-

tions.

Let y = uv, where u and v are both functions of x, and

suppose Aj/, Alt, Ay to be the increments of y, u, v corre-

sponding to the increment Aa; in x. Then we have

y + ^y — {u + Am) (w + Av)

:^ uv + uAv + vAu + Ml Av.

.: Ay = uAv + V Am + AuAv;

Am Az; Am Am .

or, -^ = M— + i» \- -— Av.
Ax Ax AX Ax

Now suppose Ax to be infinitely small, and

Ay Av Am
Ax' Ax' Ax'

become in the limit,

dy dv du
dx' dx' dx

Also, since Ai' vanishes at the same time, the limit of the

last term is zero, and hence in the limit we have

du dv
,

du ,„ » ^ , „ X-^ = u-rr + v^- (See Art. 16.)
dx dx dx ^

'

It can easily be seen that, although the last term vanishes, the

remaining terras may have any finite value whatever, since they con-

tain only the ratios of vanishing quantities (see Art. 9). For examplCj

— = -- when a; = ; but by canceling x we get — = a. But the

expression — x a:, which equals ;r x when a; = 0, becomes - x =
X \j 1

when a = 0.
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Otherwise thus:

Let fix) ^ {x) denote the two functions of x, and let

u =f{x) <t>{x).

Change x into x + h, and let m + A« denote the new

product; then

M + Am =f{x + h)<t>{x+h)

Au _ f{x + h)<l>(x + h) —fix) ^ (x)
_" Ax

~
h

Subtract and add fix) (j) (a; + h), which will not change

the value, and we have

AM ^/(a' + ^^-/(g)^(^ + h) +/(^)i(i±^-il£).

Now in the limit, when h is diminished indefinitely,

t^i+J^-^ = ^' ix) (Art. 44);

and ipix + h) = (a;)

;

therefore, ^ = /' (a;) ^ ix) +fix) <t>'
(oo),

which agrees with the preceding result.

48. Differentiation of the Product of any Number
of Functions.

Let y = uvw,

u, V, w being all functions of x.

Assume z = vw,

then y = uz,
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and by Art. 47 we have

dy _ udz zdu

dx ~dx dx

Also, by the same Article,

dz _ vdw wdv
^

dx ~ dx dx '

hence, by substitution, we have

dy dw
,

dv , du ,„ . , ^„^
-f-

^= uv-^—{ uw -^ + VW-J-- (See Art. 17.)
C(/X Cit& O/tlu uX

The same process can be extended to any number of

functions.

49. Differentiation of a Fraction.

Let y = -•

Then we shall have

u + Au
y 4- Ay = ;

ti + Au u
V -{- Av V

_ vAu — uAv
v^ + vAv

Dividing by Ax and passing to the limit,

du dv

dy _ dx dx

dx~ v^

(since vdv vanishes). (See Art. 18.)

Cor.—If tt is a constant, we have

udv

dy _ dx

dx ~ v>
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50. Differentiation of any Power of a Single Va-

riable.

1st. WTven n is a positive integer.

Let y = x";

then we have y + Ay = {x + h)"
;

therefore, Ay — wa?-" h + V '
x"-^ h^ + etc h\

Dividing by h or Aa;, we get

Aa; ^2
Passing to the limit, we have

^ = wa;"-i. (See Art. 19, 1st.) (1)
dx

2d. When n is a positive fraction.

Let y = u",

where m is a function of x ; then

y" = vT,

and

hence.
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and by Art. 49, Cor., we have

dy nu''~^du „ i^u , , . ^f. qa\ /q\

i = --u^di = - ^'*""
Tx

(^^*- 1^' ^•^)- (^)

51. Differentiation of log x.

Let 2^ = log*;

therefore, y + Ay = log (a; + h),

and Ay = log (x + /*) — log x

^'"[x-^x^+z^-^^r'

therefore, ^ = ^g _
-| + etc.);

therefore, passing to the limit, we get

dy m 1
-^ = — or -
dx X X

(according as the logarithms are not or are taken in the

Naperian system. See Art. 20).

52. Differentiation of a''.

Let y = a*.

Proceeding exactly as in Art. 31, we get

-f-
= —]oga or a" log a (Art. 21).

53. Differentiation of sin x.

Let 2/ = sin a;

;

therefore y + Ay = sin (a; + A)

;

hence. Ay = sin {x + A) — sin x.
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But from Trigonometry,

. . T3 o A + B . A —

B

sm A — sm B = 3 cos—^— sm—-

—

.: Ay — sin {x + h) — sin x

= 2 cos \x + ^j
sm ^

;

• ^

hence, -^ = cosIcb + „) ^r—

•

2

By Art. 43, when A is diminished indefinitely, the limit of

. h
sm

^ / h\= 1 ; also, the limit of cos lx + ^)= cos x.

2

Therefore, -p = cos «. (See Art. 24)

54. Differentiation of cos x.

Let y = cos a;

;

therefore, y + Ay = cos (a; -|- h)

;

hence. Ay = cos (x + h) — cos a;

2'

A-B

= — 2 sin (a; + ^1 sin

because cos A — cos B = — 2 sin f—^—

)

sm

7 . sm
Av . I li\

Therefore, ^ = - sm (a; + ^j-y
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Hence, in the limit,

^ = - sin X. (See Art. 35.)
dx

Of course this differentiation may be obtained directly

from Art. 53, in the same manner as was done in the 3d

method of Art. 35.

Since tan x, cot x, sec x, and cosec x are all fractional

forms, we may find the derivative of each of these functions

by Arts. 18 or 49, from those of sin x and cos a;, as was done

in Arts. 36, 37, 38, and 39 ; also, the derivatives of vers x

and covers x, as well as those of the circular functions, may
be found as in Arts. 30, 31, 33 to 40.

From the brief discussion that we have given, the student

will be able to compare the method of limits with the method

of infinitesimals; he will see that the results obtained by

the two methods are identically the same. In discussing by

the former method, we restricted ourselves to the use of

limiting ratios, which are the proper auxiliaries in this

method. It will be observed that, in the former method,

very small quantities of higher orders are retained till the

end of the calculation, and then neglected in passing to the

limit; while in the infinitesimal method such quantities

are neglected from the start, from the knowledge that they

necessarily disappear in the limit, and therefore cannot

affect the final result. As a logical basis of the Calculus,

the method of limits may have some advantages. In other

respects, the superiority is immeasurably on the side of the

method of infinitesimals.



CHAPTER IV.

.iUCCESSIVE DIFFERENTIALS AND DERIVATIVES.

S5. Successive Differentials.—The difEerential ob-

tu-ned immediately from the function is thefirst differential.

Tne differential of the first differential is the second differ-

ential, represented by d^y, cPu, etc., and read, "second

differential of y," etc. The differential of the second dif-

ferential is the third differential, represented by d^y, d^u,

etc., and read, "third differential of «/," etc. In like man-

n6r, we have the fourth, fifth, etc., differentials. Differen-

tials thus obtained are called successive differentials.

Thus, let AB be a right line

whose equation is y z= ax + b;

.: dy = adx. Now regard dx as

constant, i. c, let x be equicres-

cent;* and let MM', M'M", and

M"M"' represent the successive

equal increments of x, or the dn^s,

and R'P', E"P", R"'P"' the corre-

sponding increments of y, or the

dy'B. We see from the figure that R'P' = R"P" = R"'t>"'

;

therefore the dy's are all equal, and hence the difference

between any two consecutive difs being 0, the differential

of dy, i. e., d''y = 0. Also, from the equation dy = adx we

have d^y = 0, since a and dx are both constants.

Take the case of the parabola y^ = 2px (Pig. 7), from

pdx

Fig. 6.

which we get dy = ' Regarding dx as a constant, we

* When the variable increases by equal increments, i, e., when the dilTercntif^l j?

(Qnslcfnt, the Ti^riable js called an e^uicrescejit imnable,
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have MM', M'M", M"M"' as the successive equal increments

of X, or the dz's ; while we see from

Pig. 7 that R'P', R"P", R"T"', or

the dy's, are no louger equal, but

diminish as we move towards the

right, and hence the difference be-

tween any two consecutive dy-s is a

negative quantity (remembering that

the difference is always found by

taking i\i& first value from the second.

See Art. 12). Also, from the equa-

tion dy = - dx we see that dy varies inversely as y.

The student must be careful not to confound d^y with

dy^ or d{y^): the first is "second differential of ^;" the

second is "the square of dy\" the third is the differential

of y'^, which equals Zydy.

EXAMPLES.

1. Find the successive differentials ot y =.oiP.

Differentiating, we have dy = 5a:* dx. Differentiating

this, remembering that d of dy is d!^y and that dx is con-

stant, we have d!^y = 20a:* da?. In the same way, differen-

tiating again, we have d'^=60a;* da?. Again, d^y = 120.r da^.

Once more, d^y — 12Ma?. If we differentiate again, we

have d^y = 0, since dx is constant.

2. Find the successive differentials oi y =z i3fi—3a?+ 2x.

idy= (12a^ — 6x + 2)dx;

Ans. I cFy = (24a; — 6)d^;

( d^y = 2ida?.

3. Find the first six successive differentials oiy =. sin x.

{dy = cos X dx ; d?y = — sin a; dx'^

;

d^y = — cos X dx^
;

(Py = cos a;, da? ;

d*y = sin x dx*

;

d^y = — sin x dx^.



EXAMPLES. 73

4. Find the first six successive diflferentials of y = cos x.

{dy = — sin x dx

d^y = sin x do?

d^y = — sin a; da^

d^y = — cos X di?

;

d^y = cos X dx^
;

d^y = — cos a; dx^.

6. Find the fourth differential of y= x".

Ans. d^y — n{n — 1) (n — 2){n — 3) x^'^da^.

6. Find the first three successive differentials of y = a".

!dy = a^ log a dx
;

d^y = a" log^a da?;

d^y = aP lo^ a da?.

7. Find the first four successive differentials of y == log x.

Ans.

\dy =

d^y =

dx

x'
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56. Successive Derivatives.—A first derivative* is

the ratio of the differential of a function to the differential

of its variable. For example, let

y = !ifi

represent a function of a;. Differentiating and dividing by

dx, we get

I = 6.. (1)

The fraction -^ is called the first derivative of y with

respect to x, and represents the ratio of the differential' of

the function to the differential of the variable, the value of

which IS represented by the second member of the equation.

Clearing (1) of fractions, we have

dy = Qafidx;

hence, -j- or &x^ is also called the first differential coefficient

of y with respect to x, because it is the coefficient of dx.

A second derivative is the ratio of the second differential

of a function to the square of the differential of the variable.

Thus, differentiating (1) and dividing by dx, we get (since

dx is constant, Art. 55),

g = 30.^ (2)

either member of which is called the second derivative of y
with respect to x.

A third derivative is the ratio of the third differential of

a function to the cube of the differential of the variable.

Thus, differentiating (2) and dividing by dx, we get

§?e Arts, 44 and 45t
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g = 130^, (3)

either member of which is called the third derivative of y
with respect to x.

In the same way, either member of

is called the foiirth derivative of y with respect to x, and

so on.

^^°' M' jl' ^' ^' ^*°-' ^""^ '^^"^'^ respectively ^/^e

^/^/•s^, second, third, fourth, etc., differential coefficients of

y with respect to x, because they are the coefficients of dx,

dx^, da?, dod^, etc., if (1), (2), (3), (4), and so on, be cleared

of fractions.

In general, if y =f{x), we have

% = ^-^ = -^'(^^ (Art. 45); .-. dy = f'{x)dx.

S =^^ = f" (^) 5
••• ^y = f" (^) ^^;

^ = lfip =f"'{x); :.d?y=r(x)dx\

^ = ^1^} =r{x); ,.d*y = f-{x)dx^.

etc, ^ etc. = etc. .•. etc. = etc.

rfa;" dx I \ I' a J \ I

That is, the first, second, third, fourth, etc., derivatives

are also represented by /' {x), f" {x), /'" {x), /" {x), etc.



16 GBOMSTMd RMPBSlSSNfAftdN.

Strictly speaking, -^ or/' (a;) are symbols representing

the ratio of an infinitesimal increment of the function to the

corresponding infinitesimal increment of the variable, while

the second member expresses its value. For example, in

the equation y = aa:*, we obtain

~ or /' {x) is an drlitrary syinbol, representing the value

of the ratio of the infinitesimal increment of the function

{aoc^) to the corresponding infinitesimal increment of the

variable {x), while 4aic* is the value itself. It is usual,

however, to call either the derivative.

56a. Geometric Representation of the First De-

rivative.—LetAB be any plane curve

whose equation is y-=zf{x). Let P
and P' be consecutive points, and PM v e^
and P'M' consecutive ordinates. The

part of the curve PP', called an ele-

ment* of the curve, does not differ ,

from a right line. The line PP' pro-
^~~'^ rsr

longed is tangent to the curve at the
'^' '

point P (Anal. Geom., Art. 43), Draw PR parallel to XX',

and we have

MM' = PE = dx, and EP' = dy.

Denote the angle CTX by a, and since CTX = P'PR, we

have

tan « = -^•
dx

And since the tangent has the same direction as the curve

* tn this work, the word " element " will be used for brevity to denote an " in-

finitesimal element."

4



at the tangent point P, a will also denote the inclination of

the curve to the axis of x.

Hence, the first derivative of the ordinate of a curve,

at any point, is represented by the trigonometric tan-

gent of the angle which the curve at that point, or its

tangent, maJces with the axis of ac.

In expressing the above differentials and deriTatives, we
have assumed the independent variable x to be equicrescent

(Art. 55), which we are always at liberty to do. This

hypothesis greatly simplifies the expressions for the second

and higher derivatives and difEerentials of functions of x,

inasmuch as it is equivalent to making all differentials of "x

above the first vanish.. Were we to find the second deriva-

tive of y with respect to x, regarding dx as variable, we

would have

icPx^y _ ^ i^y\ ^^^y ~ ^y '

d3? ~ dx \dx) do?

ich less simple than i

by supposing dx to be constant.

which is much less simple than the expression -5^, obtained

EXAMPLES. ,

1. Given «/ = iK", to find the first four successive deriv-

atives.

dx

^ = n{n — l){n — 2)af~^ ;

g = «(«-l)(«-3)(«-3)^H
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If w be a positive integer, we have

g = ^(»i-i)(»»-3)....3.a.i.

and all the higher derivatives vanish.

If w be a negative integer, or a fraction,, none of the suc-

cessive derivatives can vanish,

3. Given y = a? log x ; find -t£'

-^ = Sa^log z + x^;

T^ = Qx log a; + 3a; + 2a! = 6a; log a; + 5x;

J = 61oga; + 6 + 5. ^ = -•

It can be easily seen that in this case all the terms in tlie

successive derivatives which do not contain log x will dis-

appear in the final result ; thus, the third derivative of o^ is

zero, and therefore that term might have been neglected
;

and the same is true of 5a;, its second derivative being zero.

„ 1+x
, , , d^y 340

4. y = 6"^; prove that -j\ = «*e<"'-

5. ^ = tan X ; find the first four successive derivatives.

dy ,
T^ = sec^a;;
dx

T-? = 3 sec* a; tan a;;
da?

-V? = 6 sec^ a; — 4 sec* x ;
da?

da^
8 tan X sec* x (3 sec* x — 1).
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6. y = log sin x
;

prove that -5-^ = 3 cot a; cosec'' x.

7. ^'^
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14. y z= a?; prove that

d^y = 6 {dxy + 18xdxdJ>x + 3x^^,

when X is not equicrescent,

15. y=f{x); prove that

d^y = /'" (x) {dxf + 3/" {x) dxd^x +/' {x) <fc,

when X is not equicrescent.

16. 2^ = e^
;
prove that

d^y — e {dxf + 3^ dx d^x + e« d^z.



CHAPTER V.

DEVELOPMENT OF FUNCTIONS.

57. A function is said to be developed, when it is

transformed into an equivalent series of terms following

some general law.

For example,

y = {a + xf,

when developed by the binomial theorem, becomes

jr = a* 4- 4a8a; + Ga^a^ + 4fla;3 + ck*,

which is 2i finite series. Also,

, 1 + x

may be developed by division into the infinite series,

y = 1 + )lx + 2x^ + 27?+ etc.,

in which the terms are arranged according to the ascending

powers of x, each coefficient after the first term being 3.

One of the most useful applications of the theory of suc-

cessive derivatives is the means it gives us of developing

functions into series by methods which we now proceed to

explain.

MACLAURIN'S THEOREM.

58. Maclaurin's Theorem, is a theorem for developing

a function of a single variable into a series arranged

according to the ascending powers of that variable, with

constant coefficients.
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Let y=f{^)

-be the function to be developed ; and assume the develop-

ment of the form

y = f{x) = A + Bx + Gx^ + D3? + Et^ + etc., (1)

in which A, B, 0, D, E, etc., are independent of x, and

depend upon the constants which enter into the given func-

tion, and upon the form of the function. It is now re-

quired to find such values for the constants A, B, C, etc.,

as will cause the assumed development to be true for all

values of x.

Differentiating (1) and finding the successive derivatives,

we have,

^ z= B + 2Gx + 3Dx^ + AEx^ + etc., (3)

^ = 20+2-3Dx + 3. iEx^ + etc., (3)

^ = 3-3i) + 3.3.4^a; + etc., (4)

g = 3 . 3 . 4^ + etc., (5.)

Now, as A, B, C, etc., are independent of x, if we can

find what they should be for any one value of x, we shall

have their values for all values of x. Hence, making a; =
in (1), (3), (3), etc., and representing what y becomes on

this hypothesis by {y) ; what -^ becomes by \-~-\
; what

— becomes by K-^ j
; and so on ; we have,

{y)=A- .: A = {y).
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2

3"

Substituting these values in (1), we have,

+ (3)itAt4 + '"-' W
which is the theorem required.

Hence, by Maclaurin's Theorem, we may develop a func-

tion of a single variable, as ^ = / {x), into a series of terms,

the first of which is the value of the function when a; = ;

the second is the value of the first derivative of the function

when a; = into x ; the third is the value of the second

x^
derivative when a; = into -^, etc.; the (w+ l)"" term is

a?>

1.3.3

We may also use the following notation for the function

and its successive derivatives : f(x), f (x), f" {x), f" (x),

f"{x), etc., as given in Art. 56, and write the above

theorem,

y =/(«') = /(o) + /' (0) f
+ /" (0) ^^ + /'" (0) j-|—

in which /(O), /' (0), /" (0),
/'" (0), etc., represent the

values which /(a?) and its successive derivatives assume
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when X = 0. We shall use this notation instead of

-^ , -~ , etc., for the sake of brevity.

This theorem, which is usually called Maclaurin's Theorem, was
previously given by Stirling in 1717 ; but appearing first in a work on

Fluxions by Maclaurin in 1743, it has usually been attributed to him,

and has gone by his name. Maclaurin, however, laid no claim to it,

for after proving it in his book, he adds, " this theorem was given by

Dr. Taylor." See Maclaurin's Fluxions, Vol. 3, Art. 751.

To Develop y = {a + as)*

Here f{x) = (a + xf;

hence, /(O) = laf.

f'{x) = Q{a-Vxf;

f (0) = 6«5.

f"{x) = 6-Q{a + xY;

f" (0) = 5 • QaK

fix) = 4.5.6(a + a;)S;

/'" (0) = 4 • 5 . GflS.

/"(z) = 3.4.5 •6(a + a;)2;

/"(O) = 3.4.5. 6a2.

/"{x) = 2.3.4.5.6(a + a;);

/' (0) = 3 • 3 . 4 . 5 . 6a

;

/"(a;) = 1.3.3.4.5.6;

/"(o) = 1.3.3.4.5-6;

Substituting in (7), we hare,

« = (a + a;)6 = ff6 + Qa^x + 5 . 6a*-^ + 4 5 . GaS-^^r

q 4. fi fl
Q^a^ 2.3.4.5- 6aa:5 1.3.3.4.5. 6a;«

+ ^'*"^'^1.2.3.4'^1.3.3.4.5^1.2.3.4.5.6

= a» + Qa?x + 15aV + aOa^a^ + l5aW + 6aa^ +sf^,



which is the same result we would obtain by the binomial

theorem.

THE BINOMIAL THEOREM.

59. To Develop j/ = (a + x)\

Here f(x) = (a + a;)"

;

hence, /(O) = a".

f'(x) = n(a + «)"-!;

/' (0) = wa"-!.

/" {x) = n{n — 1) {a + x)'^'>.

/"(O) = w(w— !).«"-«.

/'" (x) = n{n — l){n-2){a + a;)"-»;

/'" (0) = m (m — 1) (ra — 2) a-'-l

/"(a;) = w (w — 1) (w — 2) (re — 3) {a + a;)""*;

/"(O) = n{n — l)(n — 2){n — 3) a"-*, etc.

Substituting in (7), Art. 58, we haye,

ff
= (a + x)" = a" + nce'-h: -\

^^—-

—

'-

,0 1 • *

n{n — l){n — 2) a-'-^a^s*
1-2^3

,
w (w — 1) (w — 2) (w — 3) g"-V

•"
1.2.3.4 ^ + ^*°-

Thus the truth of the linomidl theorem is established,

apphcable to all values of the exponent, whether positive

or negative, integral or fractional, real or imaginary.

60. 1. To Develop y = sin x.

Here f{x) = sin a;

;

hence, /(O) = 0.

" /' (x) = cos a;

;

" /' (0) = 1.

" f"(x) = —sin a:
J

" /"(O) = 0.
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Here /'" {x) = — cos a;

;

hence, /'" (0) = - 1.

" f"{x)=smx; " f"{0)=0.
" f{x) = cosx; " /'(0) = 1.

Etc., etc. Etc., etc.

Hence, y = smx — x —
:^—^

—

- +1-2-3 ' 1.2.3. 4.

5

+ etc.1.3-3.4. 5.6.7

2. To Develop y = cos x.

Ans. y = cos ^ = 1 -^ + iTaTsTl

+ 1 o b J K a S 5 — ^tC.1.2. 3. 4. 5. 6^ 1.2. 3- 4. 5. 6-7.

8

The student will observe that hy taking the first derivative of the

series in (1), we obtain the series in (3), which is clearly as it should

be, since the first derivative of sin x is equal to cos x.

Since sin {—x) = — sin x,. from Trigonometry we might have

inferred at once that the development of sin x in terms of x could con-

tain only odd powers of x. Similarly, as cos (— x) = cos a*, the

development of cos x can contain only even powers.

By means of the two forlnulse in this Article we may
compute the natural sine and cosine of any arc. For exam-

ple, to compute the natural sine of 20°, we have x = are qt

20° = ^ = .3490652, which substituted in the formalsB,

gives sin 20° = .342020 .and cos 20° = .939693.

THE LOGARITHMIC SERIES.

61. To Develop y = log (1 + a;) in the system in

which the modulus is m.

Here /(x) = log (1 + x); hence, /(O) = 0.
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Here/" {x) = -^^, ; hence, /" (0) = -m.

"/"'(^) = (^|s; " /"'(o) = i.am.

" -^"^^^ = - ^rT$5 " /"(O) = -..2.3m.

Etc. Etc.

Substituting in (7), Art. 58, we have,

y = log (!+ «) = m (a;—|cs3+ia;'—:Ja^+^a^— etc.), (1)

which is called the logarithmic series.

Since in the Naperian system m = 1 (see Art. 20, Cor.),

we have,

2/ = log (1 + a;) = CB -
I + I

- - + - - etc. (2)

which is called the Naperian logarithmic series.

This formula might be used to compute Naperian loga-

rithms, of very small fractions ; but in other cates it is

useless, as the series in the second number is divergent for

values of a; > 1. We therefore proceed to find a formula

in which the series is convergent for all values of x ; i. e., in

which the terms will grow smaller as we extend the series.

Substituting — a; for a; in (2), we have,

/inS /v3 QJ* oj5

log(l-ar) = -a;-^---^-g-- etc. (3)

Subtracting (3) from (2), we have,

,' , X , ,, X „ 2a;8 2a^ ,
2a;^

log (1 + 3!) - log (1 - 2;) = 2a; + -g- + -g- + ^ + etc.
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_ , 1 1 +a; 2 + 1
Let X = -

, ^ ;
.-. =

22 + 1 1 — x z

Substituting in (4), we have,

, 2 + 1 «r 1 1
+

4- 1 ^ 3 (3^ + l)s ^ 5 (20 + 1)«

+ 7T2^"Ip + ^*°-]'

or log(.+ l) = log.+^3[2^+^2~3y3

+ 5 (2. + 1)«+ 7127^-17' + "*4 (^)

This series converges for all positive values of z, and more

rapidly as z increases. By means of it the Naperian loga-

rithm of any number may be computed when the logarithm

of the preceding number is known. It is only necessary to

compute the logarithms of privie numbers from the series,

since the logarithm of any other number may be obtained

by adding the logarithms of its factors. The logarithm of 1

is 0. Making 2 = 1, 2, 4, C, etc., successively in (5), we
obtain the following

Napekian ok Hyperbolic Logarithms.

log2 = logl + 2(| + 3L +_!. +_!. + _!. +_J_,

"•
rs'-'P

"•" 15T3»s + I7T3" + ^^^')

'

or, since log 1 = 0,

.33333333'

.01234568

.00082305

log 2 = 2 ( .00006532 ) = 3 (0.34657359) = 0.6931471&

.00000565

'

.00000051

.00000005

,
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log 3 = log 2 + 2g + 3I3 + ^, + A. + A. + etc.)

= 1.09861228.

log 4 = 2 log 2 = 1.38629436.

log 5=log4 + 2g + 3l3 + A.+A-, + gL+etc.)

= 1.60943790.

log 6 = log 3 + log 2 = 1.79175946.

log 7 = log6+2(l + 3i-3 + ^_ +
_l^,

+ etc.)

= 1.94590996.

log 8 = 3 log 2 = 2.07944154.

log 9 = 2 log 3 = 2.19722456.

log 10 = log 5 + log 2 = 2.30258509.

In this mannei', the Naperian logarithms of all numbers
may be computed. "Wljere the numbers are large, their

logarithms are computed more easily than in the case of

small numbers. Thus, in computing the logarithm of 101,

the first term of the series gives the result true to seven

places of decimals.

Cor. 1.—Prom (1) we see that, the logarithms of the

same number in different systems are to each other

as the moduli of those systems ; and also, that the

logarithm^ of a number in any system is equal to the

Jiaperian logarithm of the same number into the

modulus of the given system.

Cob. 2.—Dividing (1) by (2), we have

Common log (1 + x) _ ^
.

Naperian log (1 + a;)

Hence, the modulus of the common system, is equal

to the common logarithm of any number divided by

the JVaperian logarithm^ of the same number.
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Substituting in (6) the Naperian logarithm of 10 com-

puted above, and the common logarithm of 10, which is 1,

we have

'^ = o Qr.oLKnQ = .4342944819032518276511289 . .

.

which is the modulus of the common system. (See Serret's

Calcul Differentiel et Integral, p. 169.)

Hence, the common logarithm of any number is

equal to the iN'aperian logarithm of the sam,e number
into the modulus of the common system, .434-^944^-

Cor. 3.—Representing the Naperian base by e (Art. 21,

Cor. 2), we have, from Cor. 1 of the present Article,

com. log e : Fap. log e (= 1) :: .43429448 : 1;

therefore, com. log e = .43429448

;

and hence, from the table of common logarithms, we have

e = 2.718281+.

EXPONENTIAL SERIES.

62. To Develop y = a*.

Here f{x) = a^

;

hence, /(O) = 1.

/' {x) = a== log a; " /' (0) = log a.

" /" {x) = a» {log af; « /" (0) = (log af.

" /'" {x) = a» (log aY

;

« /'" (0) = (log a)K

and the development is

X X^ iK^
t/ = a=» = l + logaj + \og>aj-^ + hg^a j-^

+ log^«j;^| + etc. (1)
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OoR.—If a = e, the Naperian base, the development

becomes

2, = «» = ! + _+_. + __ + ___

Putting a; = 1, we obtain the following series, which en-

ables us to compute the value of the quantity e to any

required degree of accuracy

:

111 1

2 ' 2-3 ' 2.3-4 ' 2.3.4.5

+ ----2:3^.-^ + ^*°-

= 2.718281838+ .

63. To Develop y — tai\~^ x.

In the applications of Maclaurin's Theorem, the labor in

finding the successive derivatives is often very great. This

labor may sometimes be avoided by developing the first

derivative by some of the algebraic processes, as follows:

Here f{x) = tan~ia;;

hence, /(O) = 0.

= (by division) 1 — x^ + x^ — ofi -\- a?;

'

/'(0) = 1-

/" {x) = — 2a; + 4x3 — 6a;5 + 8a;' — lOa;* +etc.

;

/"(0) = 0.

/'"(a;) = _2 + 3-4ai2-5-6a;^+7-8a;« — etc.;

/"'(0) = -2.

/" (x) = 2-3-4a; — 4-5-6a;3 + etc.;

/"(O) = 0.
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f{x) = 2.3-4 — 3-4.5-6a;« + etc.;

/'(0) = 2.3-4.

/"(a;) = — 2-3-4-5-6a; + etc.;

/"(0) = 0.

/'"(a;) = — 3.3.4-5-6 + etc.;

/•"(O) = — 2-3-4-5.6.

Substituting in (7) of Art. 58, we get

/TfO /*>5 fvl

y = tan~i a; = a; — — + ^ ~kr + ^^•
o 7

64. It sometimes happens in the application of Maclau-

rin's Theorem tliat the function or some of its derivatives

become infinite when a; = 0. Such functions cannot be

developed by Maclaurin's Theorem, since, in such cases,

some of the terms of the series would be infinite, while the

function itself would h& finite.

For example, take the function y = log x. Here we
have

f(x) = loga;; hence, /(O) = — co.

/'(^)=^; " /'(0) = «.

^"(^) = -^; " /"(0) = -<».

etc. etc.

Substituting in Maclaurin's Theorem, we have

y — \ogx = — 00 + 00- — 00^+ etc.

Here we have the absurd result that log a; = oo for all

values of x. Hence, y = log z cannot be developed by

Maclaurin's Theorem.

Similarly, ^ = cot a; gives, when substituted in Maclau-
rin's Theorem,
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y = cot .r = 00 — 00 - + etc.

;

that is, cot a; = 00 for all values of x, which is an ahsurd

result. Hence, cot x cannot be developed by Maclaurin's

Theorem.

Also, y = x^ becomes, by Maclaurin's Theorem,

y = a;* — + ooa; + etc.

;

that is, x^ = 00 for all values of x, which is an absurd

result.

Whether the failure of Maclaurin's Theorem to develop correctly is

due to the fact that the particular function is incapable of any devel-

opment, or whether it is simply because it will not develop in the

particular form assumed in this formula, the limits of this book will

not allow us to enquire.

TAYLOR'S THEOREM.

65. Taylor's Theorem is a theorem for developing a

function of the sum of two variables into a series arranged

according to the ascending powers of one of the vainables,

with coefficients that are functions of the other variable and
of the constants.

Lemma.—We have first to prove the following lemma:
If we have a function of the sum of two variables x and y,

the derivative will be the same, whether we suppose x to

Tary and y to remain constant, or y to vary and x to remain

constant. For example, let

u = (x + yf. (1)

Differentiating (1), supposing x to vary and y to remain

constant, we have

Au , , ,— = n{x + yY-^ (2)
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Differentiating (1), supposing y to vary and x to remain

constant, we have

p^
= n{x + yr-^; (3)

from which we see that the derivative is the same in both

(2) and (3).

In general, suppose we have any function of a; + y, as

u=f(x + y). (4)

Let z = X + y; (5)

•• u=f(z). (6)

Differentiating (5), supposing x variable and y constant,

and also supposing y variable and x constant, we get

dz ^ , dz ^
-7- = 1, and T- = 1.
dx dy

Differentiating (6), we have

.•. du =f (z) dz.

du ., , , dz jr, , s I • dz A

And similarly,

du ., ,
^dz j.t I \ i dz A

du _ du
dx ~ dy

That is, the derivative ofu imth respect to a;, y being

constant, is equal to the derivative of u with respect

to y, X being constant.
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66. To prove Taylor's Theorem.

Let vl z=Lf(x -\- y) be the function to be developed, and
assume the development of the form

=.A^By^Gf^ Dy^ + Ef + etc., (1)

in which A, B, C, etc., are independent of y, but are func-

tions of X and of the constants. It is now required to find

such values for A, B, G, etc., as will make the assumed

development true for all values of x and y.

Finding the derivative of «', regarding x as constant and

y variable, we have

dv'^ = B + Wy + Wy^ + 4%" + etc. (2)

Again, finding the derivative of u', regarding x as varia-

ble and y constant, we have

du' dA dB dC . dD , ^
. ,„,^ = ^+^2/ + ^2^^ + ^2^' + etc. (3)

By Art. 65, we have ^j- = -y- : therefore,
dy dx

B+2Cy+BDf+^Bf+ei..=f +f^ + §f + §f
+ etc. (4)

Since (1) is true for every value of y, it is true when

y = 0. Making y = in (1), and representing what u'

becomes on this hypothesis by u, we have

u=f{x)=zA. (5)

Since (4) is true for every value of y, it follows from the

principle of indeterminate coefficients (Algebra) that the

coefficients of the like powers of y in the two members
must be equal. Therefore,
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31) -^ . 7)_ ^
'^'

dx'
.. -- —

J 2 3 ^^,

dx' .: M — 1.2.3-4 " tP'

Substituting these values of ^, 5, C, D, etc., in (1), we

have

, XI , \ ,
duy

,
^u y^ ,

d^u «*

Or, using the other notation (Art. 56), we have

u' =f{x+ y) =f{x) +f'(^x)l+r{x) -t^ +/"'(^)j^-

+ /"(a') 17^1 + etc., (7)

which is Taylor's Theorem. It is so called from its discov-

erer. Dr. Brook Taylor, and was first published by him in

1715, in his MetJiod of Increments.

Hence, by Taylor's Theorem, we may develop a function

of the sum of two variables; as u =/(a; + y), into a series

of terms, the first of which is the value of the function

when y = ; the second is the value of the first derivative

of the function when y = 0, into y ; the third is the value

of the second derivative when w = 0, into -^^ , etc.^ l-S

The development of /(cc — y) is obtained from (6) or (7),

by changing + y into — y ; thus.
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J,. . _ duy ^^ d^u y^

d'hi y* .

or, fix -y)= fix) -f {X)
f
+/" (,x)^ -/'" [x)^

Cor.—If we make a; = in (7), we have

W =f{y) =/(0) +/'(o)f +/"(0)^ +/"'(0) j|--

which is Maclaurin's Theorem. See (7) of Art. 58.

THE BINOMIAL THEOREM.

67. To Develop u' = {x + «/)".

Making y = 0, and taking the successive derivatives, we
have

f{x) = ar",

/' (x) = wa;"-',

/"(a;) = «(» — !) a;"-2,

/'" (x) —n{n- 1) (ra — 2) aj'-s,

/" (a;) = « (w — 1) (re — 2) {n — 3) a;"-*,

etc. etc.

Substituting these values in (7), Art. 66, we have

, / , N„ _ ,
nx?-~^y

,
w(re — l)a;"-2y

m' = (a; + «/)»= af + —j-^ + -^
j-^ ^

n{n — 1) (w — 2)ar'~'^
+ ' 172'. 3 + ^™-'

which is the Binomial Theorem (see Art. 59).

5
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68. To Develop u' = sin (a? + y).

Here f{x) = sin sc, f (x) = cos x,

f" (x) = — sin X, /'-' (x) = — cos x, etc.

Hence,

m' = sin {x + ^)

+ '°' ^ (f - rCs + 1:21:4:5 - 1:2:371-576-7 + '^)

— sin a; cosy + cos a; sin?/. (See Art. 60.)

THE LOGARITHMIC SERIES.

69. To Develop u' = log {pc + y).

Here /(^) = log a;, /'" (a;) = |,

/"(a;) = -l, etc.

Hence, u' = log {x + «/)

==^°S^ + ^-2& + 3&-4l + «*''-

CoE.—If x = l, this series becomes

log(l + 2/)=f-|V|'-|* + etd.,

which is the same as Art. 61.

EXPONENTIAL SERIES.

70. To Develop u' = «*+».

Here f{x) = a'", /" (z) = «=« log^ a,

f (x) = a" log a, f" (x) = a« logS a, etc.
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Hence,

u' = aP'+y

= a='(l+ loga-y + ^og^a^ + log^^]^ + etc.).

Cob.—If x = 0, this series becomes

ay = 1 + log a-y + log^a^^ + ^"^'"rts + ®*^"'

which is the same as Art. 63.

71. Though Taylor's Theorem in general gives the cor-

rect development of every function of the sum of two

variables, yet it sometimes happens that, for particular

values of one of the variables, the function or some of its

derivatives become infl'hite ; for these particular values, the

theorem fails to give a correct development.

For example, take the function u' = Vet + x + y.

Here, f{x) = Va + x,

/"(^) =

2'\/a + X

1_

4:{a + x)^'

f"{x) = ?—,-, etc.

Substituting in (7) of Art. 66, we have

u' — Va + X + y

^V'^in^ +^_. ^ + _J^_etc.
2Va + x 8 {a+xY 16 («+a;)^

Now when a; has the particular value — a, this equation

becomes

^' = '^y = 0-)-« — 00 + 00 — etc.

;
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that is, when x=. — a, ^/y = oo . But y is independent of

z, and may have any value whatever, irrespective of the

value of X, and hence the conclusion that when x= — a,

\/y = 00 , cannot be true. For every other value of z,

however, all the terms in the series will be finite, and the

development true.

Similarly, u' = a + Va — x + y gives, when substituted

in Taylor's Theorem,

u' ^ a + \/a — X -\- y

3-v/a — X

which, when x=.a, becomes

vl = a \- '\/y = a — 00 4- etc.

;

and hence the development fails for the particular value,

a; = a.

It will be seen that when Taylor's Theorem fails to give

the true development of a function, the failure is -only for

particular values of the variable, all other values of both

variables giving a true development; butiwhen.Maclaurin's

Theorem fails to develop a function for one value of the

variable, it fails for every other value.

Many other formulae, still more comprehensive than these,

have been derived, for the development of functions; but a

discussion of them would be out of place in this work.

EXAMPLES.

1. Develop y = Vl + xK \
Put a?=zz, and develop ; then replace 2 by its value.

Ans. y = Vl + a;*

. , a? a^ sfi ba?



EXAMPLES. 101

^- y = T=r,-

y = z = 1 + x-J-3fi + 3? + os* + etc.
^ 1 — X

y = (a + x)-\

y = {a + x)-^ = a-s _ 3^-4^; + ga-^a^ _ I0a-«a;»

f etc.

y = e"°'.

a;' a^ a;^ a:*

y = e"° ' = 1 4- a; +
3 2-4 3-5 2. 4-5.

6

+ etc.

5. 2^ = ^^'

yz=xe''-=x + x^ + ^ + 2^3 + ^^'

6. y = '\/2x — 1.

«^ = VSa; — 1 = V— 1 (l— a; — ^— -— etc.).

7. t/ = {a!> + x>)l

y = {a? \- x^Y = a^ + ^a^x' + |a~5ra^— ^ja~ia;«

+ etc.

^ V^a^ + a;*

_ 1 _ 1 ^ ba? _ S-Oa;*"

^-^"+^^ -a 4fl5
+ 4.8a9 4.8.12a«

5.9-13a;i6

+ 4.8.12.16^7
~^^'

9. y = (a^ + a*a; — a?)^.

Put a% — a^ = 2, as in Ex. 1.

X 4 a;2 4.9 0(?

5 S^a 1-2 "^5%2 1.2-3

4.9.14 a^

^*«» 1.2.3.4
+ etc.
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10. u = {x + y)K

u = x^ + ixr^y — ix-^y^ + ^x-^y^ — etc.

11. u = cos {x + y). (See Art. 68.)

u = cos (a; + ^) = cos a; cosy — sin* sin^.

12. y = tan x.

a? 2a^
2/ = tana; = a;+g+ — + etc.

13. y = sec a;,

^ = sec a;

14. y = log (1 + sin x).

y = log (1 + sin a;) = a; — |- + - —— + etc.

, , a?! 5x* 61a*
2, = seca. = l + -+^ +— + etc.



CHAPTER VI.

EVALUATION OF INDETERMINATE FORMS.

72. Indeterminate Forms.—When an algebraic ex-

pression is in the form of a fraction, each of whose terms is

variable, it sometimes happens that, for a particular value

of the independent variable, the expression becomes inde-

terminate; thus, if a certain value a when substituted for

X makes both terms of the fraction 4-?-^ vanish, then it

reduces to the form - , and its value is said to be indetermi-

nate.

Similarly, the fraction becomes indeterminate if its terms

both become infinite for a particular value of x; also the

forms 00 X and oo — oo , as well as certain others whose

logarithms assume the form oo x 0, are indeterminateforms.

It is the object of this chapter to show how the true value

of such expressions is to be found. By its true value is

meant the limiting value which the fraction assumes when

X differs by an infinitesimal from the particular value which

makes the expression indeterminate. It is evident (Arts. 9,

43) that though the terms of the fraction may be infinitesi-

mal, the ratio of the terms may have any value whatever.

In many cases, the true values of indeterminate forais

can be best found by ordinary algebraic and trigonometric

processes.

For example, suppose we have to evaluate -^—- when

a; = 1. This fraction assumes the form - when x =: 1;

but if we divide the numerator and denominator by a' — 1
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a? -\- X 4-

1

before making x = 1, the fraction becomes —-—

;

and now if we make x = l, the fraction becomes

1+1+1 _

3

1 + 1 ~ 2'

which is its true value when a; = 1.

73. Hence the first step towards the evaluation of such

expressions is to detect, if possible, the factors common to

both terms of the fraction, and to divide them out ; and

then to evaluate the resulting fraction by giving to the

variable the assigned value.

EXAMPLES.

1. Evaluate ^-^J^—^ , when x = l.

This fraction may be written

{x — l){x' + x + l) a? + x + l „ , ,

I iwT-^ 7-^ = "1 TT = 3, when X = 1.
{x — l){x^—x + l) x^ — X + 1

X
2. The fraction . = -, when .r = 0.

V fl + X— V a — X "

To find its true value, multiply both terms of the fraction

by the complementary surd, Va + x + -v/a — x, and it

becomes

X iVa + X + Va — x) Va + x + \/a — x
-^ or ~

;

and now making a; = 0, the fraction becomes Va, which is

its true value when a; = 0.

3. — when x = a. Ans. i.

X — V2a? — V?
'
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4. 5 -, when a; = 0. Ans. -r—-

5. :,- , when x = l. Ans. 5.
X — 1

6. -v/a;* + ax — X, when a; = oo Ans. ^•

There are many indeterminate forms in which it is either

impossible to detect the factor common to both terms, or

else the process is very laborious, and hence the necessity of

some general method for evaluating indeterminate forms.

Such a method is furnished us by the Differential Calculus,

which we now proceed to explain.

METHOD OF THE DIFFERENTIAL CAL-
CULUS.

74. To evaluate Functions of the form ^
Let f(x) and (/> (x) be two functions of x such that

f(x) = and ^ (x) = 0, when a; = a.

Then we shall have ^^-r = 7^-

(t>{a)

Let X take an increment li, becoming x -\- h; then the

fraction becomes

fix + A)

<t>{x + h)'

Now develop f{x + h) and 0(a: + A) by Taylor's Theo-

rem ; substituting h for y in (7) of Art. 66, we have

/(. + A) ^ /(^)+.r(^)l+/"(^)2-+etc.
_

•^ ("^ + '*)
(^) + 0' (a;) ^ + r {X) ^ + etc.

'
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or wiien x = a,

^ ("" + ^) (a) H- </.' («) A + 0" («)
J"
+ etc.

But by hypothesis / (a) — 0, and (a) = 0. Hence,

dropping the first term in the numerator and denominator,

and dividing both by Ji, we have,

/(g + A) ^
/'(-)+/"(-)

I + ^^"-

^(« + ^') 0'(a)+0"(«)| + etc.'

Now when h = 0, the numerator and denominator of

the second member become /' (a) and <p' (a) respectively

;

hence we have,

(«) 0' («)'

as the ^rtw value of the fraction v-y-^ , when x =. a.
4>{x)'

(1.) If /' (a) = and <j)' (a) be not 0, the true value of

V-7-( IS zero.
0(a)

(3.) If/' (a) be not zero and 0' (a) = 0, the true value of

f{a) .'-^ IS 00.
q>{a)

(3.) If /' (a) = 0, and 0' (a) = 0, the new fraction

{, W is still of the indeterminate form -it- Dropping in

this case the first tioo terms of the numerator and denomi-

nator of (1), dividing both by ^, and making h = 0,

we have.
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/(«) _/"(«)
0(a) -f'(«)'

fix)
as the true value of the fraction -rr-x , when x = a.

<p{x)'

If this fraction be also of the form ^r , we proceed to the

next derivatiTe, and thus we proceed till a pair of deriva-

tives is found which do not hotli reduce to zero, when

a; = a. The last result is the true value of the fraction.

EXAMPLES.

1. Evaluate —^-— , when x = 1.
X — 1

Here / (x) = log x, tji (x) = x — 1;

••• /'(^)=p and <^'(a;) = i;

(j) {x) <p' {x) 1 X_}i*

1,
—^-^ = 1, when X = 1.
X — 1

That is,

1 COS 3/

2. Evaluate -„ , when x = 0.

Therefore, ^1 = f

/' (x) sm a; . .

<j) {X) 2a;
'

/" (a?) _ cos»"l _ 1

f (:^)
~ 2 Jo

0(a;)_

* The snbacript denotes the value of the independ?nt vsrisbl? for wWcb tb?

Action is ev»lu»t^d,
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n
a; sm a; — -

3. Evaluate , when x z= -.
cos X 2

TT f (x) X cos x-i- sm X'
Here tt-H — ^

<p (x) — sin X

Hence IM = - i,
4>{x)

. O' — i^ ,

4. , when X = 0.

— 1
= — 1.

5.

X
Ans. log •=-•

(a; — a)'
:, when a; = a.

Here
/'(^)

./.'(a;)

according as s > or < 1

X — sin X

we™ "1= ~7 vTT = 00 or 0,s{x — a)"-'Jo
'

6.
x^

, when a; =

e»= — e^— 2a; ,

7. V , when a; =
X — sm X

ga> g-x,

8. —

:

, when a; =
sm X

e* — 3 sin a; — e~*

X — sm X

derivative.

Ans. \.

Ans. 2.

Ans, 2.

, when X = 0. Take the third.

Ans. 4.

10. ~, when a; = a. Cancel the factor (a — x)i
(a — a;)«

^ ^

75. To evaluate Functions of the form §-•

Let ^-^ = — , when x = a.
<p{x) op

'
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Since the terms of this fraction are infinites when x z= a,

their reciprocals are infinitesimals (Art. 8) ; that is,

= 0, and —jr-r = 0, when jb = a ; hence,

1

f{x) ^{x) ,

1

{x\
and therefore the true values of ^ ^ ' may be obtained by

W)
Art. 74 ; that is, by taking the deriTatives of the terms,

thus,

1 <l>'{x)

^{x)- _i_- f'{x) -fix) [<p{x)r
^^'"^ - "'

<^(a) -/'(«) [0(a)p-

Dividing by ^-|^, we get,

0>) />)

.

^-/'(a)' .A (a)'

whence ^^ -(^-

Hence the true value, of the indeterminate form — is
00

found in the same manner as that of the form -•

In the above demonetration, in dividing the equation bv ^^, when

X = ayyre assumed that —.--{ is neither nor oo , so that the proof
0(a)

would fail in either of these cases.
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It may, however, be completed as follows : Suppose the true value

of 4--! to be ; then the value of £M±.M^ is n, where h may

be any constant. But" as this latter fraction has a value which is

neither nor «, its value by the above method is —,—,
<j> {a)

or
, I

!+ ^> ^i"i since the value of this fraction is li, the first term

^ =. : i. .., where 4^ = 0, £^ is also 0.
¥{a) <t>{.a) ' f(asj

fix)
Similarly, if the true value of ^4 he oo when x = a, then

0(0!)

—-, = ; and therefore we have .}, . = 0, by what has just been

shown ; .•.
.
, / = (»

.

(a)

Therefore, in every case the value of '^-r determines the value of
9 (a)

^~ for either of the indeterminate forms ;r or — . (See Williamson's
(a) 00

Dif. Cal., p. 100.)

EXAMPLES.

1. Evaluate , when a; = oo

.

Here
(j) {x) (pi {x) nx""^ Ma?'Joo

loff X
2. ETaluate —^— , when a; = 0.

cot X

Here

1

/' (a;) _ X _ _ sin^ x ~\ _ ,

0' (x) ~ — cosec'a; x Jo~ '

/" (p") _ 3 sin a; cos x~

^^ ~
1 _

-^f-^ = 0, when a; = Q,
cot a;

= 0;
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1 — log a; , „
T" » when a; = 0. Ans. 0.

7T

, when a; = 0.
to' 8

cot-^

log tan (%x) 1 „ . ,

5. °
,

—^^

—

-, when a; = 0. Jws. 1.
log tan X

76. To evaluate Functions of the form x oo .

Let f(x) X (a;) = X 00, when a; = a.

The function in this case is easily reducible to the form

- ; for if f(a) = 0, and <p{a) = oo , the expression can be

written "^-y^, which = -; therefore /(a;) x </)(a;) = ^\^,

may be evaluated by the method of Art. 74.

EXAMPLES.

1. Evaluate (1 — x) tan — , when a; = 1.

We may write this

1 — x

,
-nx

<i> {x) n ,nx TT 1 7T
^ ' — jr COSeC* -jr-

2. Evaluate ar* log a;, when x = 0.

1

, log a; X a;""!
»'' log a; = —§— = —T = =0.f^ 2^ Jo —TO"'"-' nJo
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3. e"* log X, when a; = qo . Ans. 0.

4. sec a; (a; sin x — ^), when ck = ^- Ans. — 1.

77. To evaluate Functions of the form oo — oo .

Let f{x) and <p (x) be two functions of x which become

infinite when a; = a. Then /(a;) — (a;) = oo — oo, when

* = a.

The function in this case can be easily reduced to the

form - , and may be evaluated as heretofore.

EXAMPLES.

2 1
1. Evaluate -5 , when a; = 1.

a;^ — 1 X — 1

This takes the form 00 — 00 , when a; = 1.

a 1 3_a; — 1 = pr , when a; = 1.x^—1 x — 1 x^ — 1

f(li
= Ti = -^' whena; = l.

3. Evaluate —pr—— °g <

g
— , when a; = 0,

a; (1 + a:) a;'
'

which takes the form 00 — 00 , when a; = 0.

1 _ log (1 + x) _ a;-(l + a;)log(l + x)

a; (1 + a;) x^ a?^ (1 + a;)

__ a;-(l +a:)log(l+a;)

x^

(rememhering that 1 + a; = 1, when x vanishes).
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f"{x)_ 1 + x

i>"{x) 2 _o

TT

3. Evaluate sec a; — tan x, when a; = -•

1 — sin a; , tt

sec X — tan x = • = - , when a; = -•
cos a; 2

f (ps) __ — cos x~

fp' (x) — sin a;

= 0.

n 77

Hence, sec ^ and tan ^ are either absolutely equal, or

differ by a quantity which must be neglected in their alge-

braic sum.*

4.
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Hence, [/(a;)] becomes indeterminate when it is of

the form 0" or oo o,

{2.) When f{x) = 1, and (a;) = ± oo

,

log 2/ = ix) \ogf{x) = ± 00 X 0.

Hence, [/(a;)]* is indeterminate when of the forms

Hence the indeterminate forms of this class are

• 0»,* 00 0, 1±°°,

and may all be evaluated as in Art. 76, by first evaluating

their logarithms, which take the form x oo

.

EXAMPLES.

1. Evaluate x?', when a; = 0.

We have log x" = x log x =. —^ ^

1

f'{x)_ X _ , _ -

0' («)
- =:^^ - -^J«-"J

.*. log a^ = 0, when x = Q;

hence, a;* = 1, when a; = 0.

3. Evaluate x°. when a; = oo

.

log af = - log X =
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.'. log af =: 0, when a; = oo
;

hence, af = 1, when aj = oo.

3. Evaluate (l + -| , when x = cc.
i^^tf-

Let a; = - , and denote the function by u.

Then u = {1 + azy]o

(since when a; = oo , « = 0) ; and

, log (1 + az) , .
log M = —^-^

, when z = 0.

Taking dematives, we have

a
log Woe = a;

1 + a2jo

1 + -
j = a, when a; = oo

;

1 + - 1 = e«, when a; = oo

.

If a = 1, we have

that is, as x increases indefinitely, the limiting value (Art.

41) of the function (l + -I is the Naperian base.

-I , when x = 0. Ans. 1.

5. af'°% when a; = 0. Ans. 1.

3 1 ", when x = a. Ans. e\
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79. Compound Indeterminate Forms.—If an inde-

terminate form be the product of two or more expressions,

each of which becomes indeterminate for the same value of

X, its true value can be found by evaluating each factor

separately ; also, when the value of any indeterminate form

is known, that of any power of it can be determined.

EXAMPLES.

1. Evaluate —
-, when a; = oo.

This fraction may be written ©"

We first evaluate — , when x=.ck>.

= 1=0.
CO

Here
-Jj^

= ^
^' {x) 1 ^

n

Hence, -, = 0" = 0.
giC

3. Evaluate a;" log" x, when a; = 0, and m and n are

positive.

Here (a;" log xY = f^^X-
\x~n /

We first evaluate —^, when x = 0.

We have

X n

1

i>' (x) m -5^1
X

n

»» -1= a;" =0.m J„
.*. or- log" a; = 0" = 0.
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3.
a;"

m-l-n
,
a-m-l

- , when a; = 1.1— a??

This function can be written in the form

X^ 1 _ ^n

1 + a-'i- 1 a:*

We have to CTahiate only the latter function for a; = 1,

since the former is determinate.

Here
^' (x) —px''-'^

nx"~^ n ^_„

P

x^

P

_ 1

Y+xP ~ %
'

£v.n ___ rvjm.-\-n m

x-p 2p'

when a; = 1.

when a; = 1.

when a; = 1.

{x^ — a^) sm—
4. , when x = a.

a? cos
TTX

2a

{a? — a^) sin
nx

2a

. TTX

x^-a^ ™2^
TTX

OP cos s-
2a

cos
Tra:

2a

a;2

We have only to evaluate the first factor,

and

x^ — a2-
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13. (—^) (pass to logarithms), when a; = oo.

Ans. 1.

13. 2a; sin jz- , when a; = oo

.

a.

14. «== sin a;, when a; = 0. oo

.

15. (cos aa;)''"'"'' " (pass to logarithms, and dif. twice),

ivhen a; = 0. -~
e 2«".

16. a;'" (sin a;)'°°
"^ (2~ -f-| (see Art. 79), when a; = ^•

^ '^ \2 sin %xl ^
' 2

TT"'

17. (sin a;)""'', when a; =g- 3U



CHAPTER VII.

FUNCTIONS OF TWO OR MORE VARIABLES, AND
CHANGE OF THE INDEPENDENT VARIABLE.

80. Partial Differentiation.—In the preceding chap-

ters, we have considered only functions of one independent

variable: such functions are furnished us in Analytic

Geometry of Two Dimensions. In the jiresent chapter, we
are to consider functions of tioo or more variables. Analytic

Geometry of Three Dimensions introduces us to functions of

the latter kind. For example, the equation

2 = a.r + 6«/ + c (1)

represents a plane ; x and y are tivo independent variables,

of which « is a function. In this equation, z may be

changed by changing either a; or «/, or by changing them

both, as they are entirely independent of each other, and

either of them may be considered to change without affect-

ing the other ; in this case z, the value of which depends

upon the values of x and y, is called a function of the inde-

pendent variables x and y.

A partial differential of a function of several variables is

a differential obtained on the hypothesis that only one of

the variables changes.

A total differential of a function of several variables is a

differential obtained on the hypothesis that all the variables

change.

A partial derivative of a function of several variables is

the ratio of a partial differential of the function to the dif-

ferential of the variable supposed to change.
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(A total derivative of a function of several variables is the

ratio of the total differential of the function to the differen-

tial of some one of its variables. (See Olney's Calculus,

p. 45.)

As all the variables except one are, for the time being,

treated as constants, it follows that the partial differentials

and derivatives of any expression can be obtained by the

same rules as the differentials and derivatives in the case of

a single variable.

,

If we differentiate (1), first with respect to z, regarding

y as constant, and then with respect to y, regarding x as

consta.nt, we get

dz — adx,^ (2)

and dz = bdy. (3)

Dividing (2) and (3) by dx and dy respectively, we get,

and 1 = 5.
'

(5)

The expressions in (2) and (3) are called the partial

differentials of z with respect to x and y, respectively, while

-r and -r- are called the partial derivatives of z with re-
dx dy

spect to the same variables.

Since a and b in (4) and (5) are the partial derivatives of

2 with respect to x and y, respectively, we see from (2)

that the partial, differential of z with respect to x, is equal

to the partial 'derivative of z with respect to x multiplied

by dx, and similarly for the partial differential of y.

Hence, generally^ if

denotes a function of three variables, x, y, z, its derivative

or differential when x alone is supposed to change, is called

6
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the partial derivative or differential of the function with

respect to X, and similarly for the other variables, y and z.

If the function be represented by u, its partial derivatives

are denoted by

du du du

dx' dy' dz'

and its partial differentials by

du ^ du -, du ,

Tx'^'^' Ty^y' dz^'-

81. DifTerentiation of a Function of Two Varia-

bles.—Let u = f{x, y), and represent the partial differ-

du '
'"

ential of u with respect to x, by -j- dx, and with respect

d/lifj
—

^

to y, by
-J-

dy, while du represents the total differential.

Let X and y receive the infinitesimal increments dx and

dy, and let the corresponding increment of u be du. Then
we have,

du =f{x { dx, y + dy) —f{x, y).

Subtract and add f(x,y-\- dy), and we have

du =f{x+dx, y+dy)—f{x, y+dy) +f{x, y+dy)

—f(^, y)-

Now f{x-\-dx, y+dy)—f{x, y-\-dy) z=-^dx, because

it is the difference between two consecutive states of the

function due to a change in x alone; that is, whatever dif-

ference there is between /(a; +(?a;, y-^dy) &tidLf{x, y+ dy)

is due solely to the change in x, as y+ dy is the value of ^
in both of them. For the same reason,

f{x, y+ dy) -f{x,y) = ^dy;

S,d4 thej-efpre we bfiye du — —dx + -j- dy,



in which -r- dx and -r- dy are the partial differentials of u

with respect to x and y, respectively, while du is the total

differential of m when both x and «/ are supposed to vary.

In the same way, we may find the diflferential of any num-
ber of variables.

Hence, the total differential of a function of two or more

variables is equal to the sum of its partial differentials.

The student will carefully observe the different meanings

given to the infinitely small quantity du in this equation,

otherwise the equation will seem to be inconsistent with the

principles of algebra. Thus, in -j-dx, du denotes the in-

finitely small change in u arising from the increment dx in

X, y being regarded as constant. Also, in --=- dy, du denotes
ay

the infinitely small change in u arising from the increment

dy in y, x being regarded as constant, while dti- in the first

member denotes the total change in u caused by both x and

y changing. If the partial differentials of x and y be rep-

resented by dji and d^u, respectively, the preceding equa-

tion may be written

du = d^ti + dyU.

EXAMPLES.

1. Let u = ay^ + bxy + ca? + ey + gx -\- h, to find the

total differential of u.

Differentiating with respect to x, we have

d^ii = bydx + 2cxdx + gdx.

Differentiating with respect to y, we have

dyU = 2aydy + bxdy -{ edy.

Hence, dii = {by -h 2cx + g)dx + {2ay + bx -\- e) dy.
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%. u = ofl.

Here d^u = yocM-^ dx, d^u — o/Sulogx dy.

Hence, du = yx^"^ dx + x// log x dy.

Here djj, = —„dx, dM = -^dv.

Hence, du = —.dx -{- -^ dy.

4. M = tan~i "•

a;

Here d.u = ^^= - ^3.
^ f x^ + yi*

x^

dM = 5 = —

—

^—. j-\'^

T ,f ^^ + y^ ^

.

TT , xdy — ydx
Hence, du = —^—S;--

x^ + ^^

. . . X
,

. y
5. M = sin 1 - + sin~i v-

Here d^u = -^=., d.u = —^
V a' — a;2 VS' _ yi

Hence, du = — -] —^
Va> — x^ y/W — y^

6. « = «/"»'. Jw = y-'»Mog2/.cosxrfa; + ?i^if.
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,

«

7
ydx — xdy

7. u = Yers~i— du = ,
—-^ -

y «/A/2a;2/ — x^

8. M = log a^y. du z=-dx-\- log a; <?«/•

82. To Find the Total Derivative of u with re-

spect to X, when u = f{y, »), and y = <P {x),

« = 01 (a?).

Since u=f{y, z), we have (Art. 81),

dv, = ^dy + ^dz; (1)

and since y = (t>{x), we have dy = ~-dx;

dz
since z = 0i (a;)j we have dz = -^ dx.

Substituting these values for dy and (?« in (1), we get

._^dydudz^
~ dii fir ^ dz dr ^ '

Dividing by dx, and denoting the total derivative by
( ),

we have
(du\ _ dudy du dz

dx) ~ dy dx dz dx ^

Cob. 1.—If z = x, the proposition becomes u =.f{x, y)

dz
and y =z<i>{x); and since -j- = 1, (3) becomes

(du\ _ du du dy

dx) ~ dx dy dx

CoK. 3.—If u =-f(x, y, z), and y = <l>
(x), and z = (l)i {x),

we have
, du T du , du ^ ,^.
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dv =. -^ dx, and dz = ^r dx.
'^ dx dx

Substituting the values of dy and dz in (1), and dividing

by dx, we get

idu\ _ du du dy du dz

\dx} ~ dx dy dx dz dx

CoE. 3.— If u =/(«/, z, v), and y = <p{x), and z =
^1 (x), and V =

<t>2
(x), we have,

, du ^ du -, . dv.- , ,,.

^'' = Ty^y-^Tz^^-^dv^'"- (1)

, du -, , dz ; , dv ^
dii ::= -f- dx; dz ^= ^rdx dv = ^- dx.
" dx dx dx

Substituting the values of dy, dz, dv, in (1), and dividing

by dx, we get

ldu\ __ du dy du dz du dv

\dxi ~ dy dx dz dx dv dx

CoE. 4.—If u =f{y) and y =:
<l> (x), to find -j--

Since
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indirectly a function of x through y and z. In Cor. 3, u is

indirectly a function of x through y, z, and v. In Cor. 4,

M is indirectly a function of x through y.

The equations in this Article may seem to be inconsistent

with the principles of Algebra, and even absurd ; but a little

reflection will remove the difficulty. The du'B must be

carefully distinguished from each other. In Cor. 1, for

example, the du in -r- is that part of the change in u

which results directly from a change in x, while y remains

constant ; and the du in j- is that part of the change in u

which results indirectly from a change in x through y ; and

-^1 is the entire change in u which results

directly from a change in x, and indirectly from a change

in X through y.

1. M = tan""i

y

EXAMPLES
X
and y = {r^ — x^)i, to find (^j-

Here ^ = t du ^ _x_
^^^ dy ^ _ a;.

dx r'' dy r^' dx y

have

Substituting in (|) =g + J| (Art. 82, Cor. 1), we

\dxl ~ r^^\ rV\ yl

_ y^ + x^ _ 1

~ r^y ~ V^?iZ^3'

and this value is of course the same that we would obtain

if we substituted in m = tan-i - for y its value in terms of

X, and then differentiated with respect to x.
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2. u — tan~i {xy) and y = ^, to find (-^)-

Here -r- = y du _ X dy _
dx~l + x^y^' dy~l + ^f dx

'

.: (Art. 82, Cor. 1),

ldu\ _ y + e^x _^ (1+a;)

.

\dx) ~ 1 + xY ~ 1 +a^'
and this value is of course the same that we would obtain if

we differentiated tan~i {xe"') with respect to x.

3. M = z^-\-y^-\-zy and 2 = sin a;, y =^ ^, to find (-t-)*

Here ^ = 3^^ + ., ^ = ^^ + 2^»

dz dy
T- = cos a:, ~ ^= &^.
dx dx

.: (Art. 82),

C^) = (^^' + «) e* + (22 + y) cos a;

= (3e^ + sin x) (^ + (3 sin x + e»') cos x

= Z^" + e* (gin a; _|_ cos x) + sin 2a;.

(See Todhunter's Dif. CaL, p. 150.)

Let the student confirm this result by substituting in u,

for y and z, their values in terms of x, thus obtaining

u =^ ^ -\- e'^ sm X \- sin^ x,

and then differentiate with respect to x.

4. u — sm-i (y — 2), «/ = 3a;, 2 — da^.

<fM _ 1

^2/
~

Vl - (3/
- 2)3*
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du _ 1

1^ ~ ~
Vl - (2/

- z)^

f? = 3, ^ = 12:^.

3 — 12a;a

Vl — (2/ — «)'

_ 3-12a^ _ ^J
""
Vl — 9a;3 + 24a,-^— 16^ ~ Vl— «^

gflaj /^.y j2\

5. u = —^—r^ and « = a sin a;, « = cos a;,

a^ + 1

... .v.(Art.82),(|) =

(Zy""a« + 1' (Z2 a2 + l'

(?w dz
-^ = a cos z, T- = — sin a;.

dx dx

du _ ae"^ {y — z)

dx a^ + 1

.-. (Art. 82, Cor. 2),

I
—- 1 = -= (a cos a; + sm a; + a^ sm a; — a cos x)
\dxi a'' + 1 ^

= e<™ sin a;. (See Courtenay's Cal., p. 73.

)

6. M = «/^ and 2/ = e% 2 = a!< — 4a;3 + 12a;2 — 24a; +24.

7. If u=f{z) and « = («, «/), show that

<?M dz , du dz ,

^'^^'didi^''^^Tv^y-

8. « = -^^ — -^ + g^ ^'l^ ^ = ^°g '^•
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83. Successive Partial Differentiation of Func-
tions of Two Independent Variables.

Let u ^ f{x, y)

be a function of the independent variables x and y ; then

J- and -5- are, in general, functions of x and y, and hence

may be differentiated with respect to either x or y, thus

obtaining a class of second partial differentials. Since the

partial differentials of u with respect to x and y have betn

(ill {JfJ

represented by -5- dx and -^ c?«/ (Art. 81), we may repre-

sent the successive partial differentials as follows

:

The partial differential of l-j- dx), with respect to x,

-A(^clz]dx- dxUx'^V^^'

which may be abbreviated into

— da?

The partial differential of l-^- dx), with respect to y,

d /du , \ ,

which may be abbreviated into

df^u

dy dx
dydx.

Again, both y-^ do^ and t—-p dy dx will generally be

functions of both x and y, and may be differentiated with

respect to x or y, giving us third partial differentials, and

80 on. Hence we use such symbols as
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-r:—r^ dy d%\ -^—=—=- dx dti dx, and , „ ,
d'tfi dx,

dydT? '^ ' dxdydx ^ dy^ dx '^ '

the meaning of which is evident from the preceding re-

marks. For example, - dx dy dx denotes that the
uiOii dy aos

function u is first difEerentiated with respect to x, supposing

y constant; the resulting function is then differentiated

with respect to y, supposing x constant; this last result is

then differentiated with respect to x, supposing y constant

;

and similarly in all other cases.

When u z=f{x, y), the partial derivatives are denoted by

dJ'u d^u (^u d^u d?u d^u

dx^ ' dy'^ ' dxdy' ds^' dx^ dy ' dx dy^
' etc.

84. If t( be a Function of x and y, to prove that

d!^u , , d^u , ,

T—=- dx dy = -^—5- dy dx.
dxdy ^ dy dx ''

Take m = x^y^,

-j-dx = 2xy^dx,

-^dy — ZxYdy,

dy
-^dydx = Gxy^ dy dx.

-^—5- dx dy = Qxy^ dx dy.
dxdy '^ ^ "

In this particular case,

d^u J -, d^v, , ,
, , dx dy = 3—=- dy dx:
dx dy " dy dx '^

that is, the values of the partial differentials are independ-

ent of the order in which the variahles are supposed to

change.
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To show this generally:

Let u=f{x,y);

*^®° ^ ^^ ~ /(a;+^^> y) —f{^, y)-

This expression being regarded as a function of y, let y
become y+ dy, a; remaining constant ; then

ThX'^^^l'^y =/(^+^^' y+dy) -f(x, y+ dy)
^

-[fi=c+dx,y)-fix,y)]
— f{x+dx, y+dy) —f{x, y+dy)

-f{x+ dx,y)+f(x,y).
In hke manner,

^dy =f{x, y+dy) —f{x, y).

^\-2,^y)^^=f{^+'^^> y+^y) -f{x+dx, y)
^ -U{^,y+dy)-f{x,y)]

= f{x+ dx, y+ dy) —f{x+ dx, y)

—f{^,y+ dy)+f{x,y).

These two results being identical, we have

d (du , \ , d Idu -, \ -.

TyW'')'^y = Tx\Ty^yr'''

,, ,. d^u , , d^u , ,
that IS, -^—=- dit dx = -^r—^ dx dy.

dy dx ^ dxdy "

Dividing by dy dx, we get

d^u d^u

dy dx ~ dxdy

In the same manner, it may be shown that

, „ , dx^ dti = -^—^ -„ dy dx\
dx^dy •' dy da? ^ '

dH d^u
or :!=

da? dy dy d^'

and so on to any extent.
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EXAMPLES.

1. Given u = sin {x + y), to find the successive partial

derivatives with respect to x.

^ = cos {x + y), -^3 = - sin (^ + y)'

^ = - cos (x + y), -^ = sin {x + y), etc.

3. t« = log {x + «/), to find the successive partial de-

rivatives with respect to x, and also with respect to y in

the common system.

du _ m d^u _ m d^u _ 3mi

dx X + y' dx^
~"

{x + yY' da? ~ {x + yY'

du _ m d^u _ m d^u _ 2m
dy ~ X + y' dy^ ~ {x + yf dy^

~~
{x { yY

(See Art. 65, Lemma.)

3. If M = a; log y, verify that

4. If M = tan~i (-), verify that

5. If M = sin (aa" + iy°),

verify that

dH
dydx
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Differentiating this equation, and observing that -r, -j-,

are, in general, functions of both x and y (Art. 83), and

remembering that x and y are independent, and hence

that dx and dy are constant, we have,

d(^r dx] d[^r dx] d(-^ dy]
\dx I -, \ax I , , \dy ^ I ,

d?u — f dx H J dy -\ f dx
dx dy "^ dx

„ d^u '
,

dhi , , , d^u -, J d^u J „dH = -^,dx^ + a^Jyd^ ^my^'^^y + d^^^y

(since -5-^ dydx = , , dxdy, Art. 84).

DifEerentiating (3), remembering that each term is a

function of x and y, and hence that the total differential

of each term is equal to the sum of its partial differentials,

we get,

^^ = £^ ^^ +
^ iky '^''y + 'mf '^'f+pf'(')

and so on. It will be observed that the coefficients and

exponents in the different terms of these differentials are

the same as those in the corresponding powers of a bino-

mial ; and hence any required differential may be written

out.

• The total differential of eacli of the terms (-p dx) and (— dy\ is equal to th«

Enn of its partial differentials,
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can be solved with respect to y, giving for example

y = 4> (x), then the derivative of y with respect to x can be

found by previous rules. But as it is often difficult and

sometimes impossible to solve the given equation, it is

necessary to iitvestigate a rule for finding -^ without

solving the equation.

87. DifTerentiation of an Implicit Function.

Let f(x, y) = 0,

in which y is an implicit function of x, to find -p-

Let f{x, y) — u.

Then u ^^f{x,y) = 0.

Hence by (Art. 82, Cor. 1), we have,

ldu\ _ du du dy

\dxl ~ dx dy dx

But u is always — 0, and therefore its total differential

= ; hence {-^\ = 0, and therefore,

du du dy

dx dy dx '

from which we get,

du
dy _ dx^

dx~ du'

dy

ScH.—It will be observed that while
\-f\

= 0, neither

du du . . , ^ -r,^ nor -^ IS in general = 0. For example,

x^ + y^ — r^ =
is of the form f(x, y) = 0. "We see that if x changes while

y remains constant, the function changes, and hence is no
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longer = 0. Also, if y changes while x remains constant,

the function does not remain = 0. But if when x changes

y takes a corresponding change by virtue of its dependence

on X, the function remains = 0.

EXAMPLES.
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3. a? — ax^y + IxY — y^ = Q, to find -^^

-^ =z boi^ — da3?y + Zlxy'^;

p = —a3^ + 2bx^y — 5y*;

,, „ dy 5x^ — 3ax^y + %bxifi
therefore, -f- — -^—.—„, ^ 1-

" " ax y — ax

6. y3_3y + ^ = o. 1 = 30^^- ~-

7. .3 + 3a., + ,3 = o. |=-^t2-

88. To Find the Second Derivative of an Im-

plicit Function.

Let u = f{x, y) = 0.

du

dy

du dudy . ,„,

-dx-^Tytx = ^' (^)

it is required to find -r^-

Differentiating (2), remembering that -^ , -^ , are func-

tions of X and ?/, we get ^

£?% <?2?« % /«?% dy dhi \dy du d?y _
dx^ dy dx dx Kdy^ dx dx dy) dx dy da?

~

\



or
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d^u dy d^u dy^ du d^y _ , ,

dx^ dx dy dx dy^ dx^ dy dx^

Substituting the value of -j- from (1), and clearing of

fractions, we get

dhi du^ d^u du du dhi du^ du^ d^y _
dx^ dip dx dy dx dy dy^ dx^ dy^ dx^

~

Solving for ^, we get

dJ^u/dW^ dhi dudu d^u'/du'^

d^y dx^ \dy) dx dy dx dy dy'^ \dx)

dx* (du

[dy,

(*)

SCH.—This equation is so complicated that in practice it

is generally more convenient to differentiate the value of the

first derivative immediately than to substitute in (4). The
third and higher derivatives may be obtained in a similar

manner, but their forms are very complicated.

Equation (2) is frequently called the first derived equation

or tJie^ differential equation of the first order ; and equation

(3) is called the second derived equation or the differential

equation of the second order.
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a. y'^-%axy^^-W = 0, to find ^, ff- (See Sch.)

dy ay — x

dx~ y — ax

^ ^ iy-ax)[a^£-l)-{ay-x){^£-a
)

d7? {y — axY

_ {y — ax) {a^y — y) — {ay — ^) {g^^ — ^)

{y — ax)^

(by substituting the value of -^j

_ (a» — 1) (/ — 2axy + x^) _ 1^ {a^ — 1)~
{y — axY ~

{y — a^Y

'

3. 3? + 3axy + «8 = o, to find -^ and -^^,'
^ * '

. dx dx^

Differentiating, we have

(x^ + ay) dx + {y^ + ax) dy = 0;

dy ay' + ay

dx ~ y^ + ax

_.^
^.y_ [^- + 4^^' + a-)-{:^y% + aY-'^ay)

da? (y^ + axy

= t4^^-x-^- (See Price's Calculus, Vol. I, p. 143.)
{y^ + axf ^

.,,,,„ du X c^y a^

^ dx y dx^ 2/

89. Change of the Independent Variable.—Thus

dy ^v
far we have employed the derivatives -j- , -j^^ etc., upon

the hypothesis that x was the independent variable and y
the function. But in the discussion of expressions contain-
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ing the successive differentials and derivatives of a function

with respect to x, it is frequently desirable to change the

expression into its equivalent when y is made the independ-

ent variable and x the function ; or to introduce some other

variable of which both y and x are functions, and make it

the independent variable.

90. To Find the Values of ||, ||, f^„
etc.,

when neither x nor y is Equicrescent. (Art. 55.)

The value of the first derivative, -^ , will be the same

whether x or y, or neither, is considered equicrescent.

The value of the second derivative, -~ , was obtained in

Art. 56 by differentiating -^ as a fraction with a constant

denominator and dividing by dx.

If we now consider that neither x nor y is equicrescent,

and hence that both dx and dy are variables, and differen-

tiate T^ , we have
dx

d^y _ d ldy\ _ d^y dx — d^x dy ,.,

^ ~ ^W ~
' d3?

' ^ '

which is therefore the value of the second derivative when

neither variable is equicrescent.

Similarly,

^ ^ d^l^\
da? dx \dxv

{^y dx — d^x dy) dx — 3 {d^y dx — dJ^x dy) cfix , ,

^^ ' ^^^

which is the value of the third derivative when neither

variable is equicrescent, and so on for any other derivative.



EXAMPLES.

OR.—If a, is equicrescent, these equations are identical.

If y is equicrescent, ^y^^y^ 0, and (1) becomes

^ _ _ fxdy . .

and (3) becomes

d^y 3 {d^xf dy — d^x dy dx . ,

dx^
~

Hx^ ' ^'

which are the values of the second and third derivatives

when y is equicrescent.

ScH. 1.—Hence, if we wish to change an expression when

X is equicrescent into its equivalent where neither x nor y is

equicrescent, we must replace y^ , -— , etc., by their com-

plete values in (1), (2), etc.; but if we want an equivalent

expression in which y is equicrescent, we must replace

^' rfj'
®*°"' ^y ^^^^^ "^^^^^^ ^^ (^)' ^*^' ^^'

ScH. 2.—If we wish to change an expression in which x

is equicrescent into its equivalent, and have the result in

terms of a new independent variable t, of which a; is a

function, we must replace --1 , -^^ , etc., by their complete

values in (1), (2), etc., and then substitute in the resulting

expression, in which neither x nor y is equicrescent, the

values of x, dx, d^x, etc., in terms of the new equicrescent

variable.

EXAMPLES.

1. Transform ^ j| + f;^) —J^ = 0, in which x is

equicrescent, into its equivalents, (1) when neither x nor y
is equicrescent, {2) when y is equicrescent.
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(1.) Replace -— by its value in (1), and multiply by dx^,

and we have

X {cPy dx — d^x dy) + dy^ — dy dx^ = 0.

(3.) Put (Py = 0, divide by dy^ to have the differential

of the independent variable in its proper position, the de-

nominator, and change signs, and we have

d^x

dy'^ \dy

2. Transform g - ^-^| +^ == 0, in which x

is equierescent, into its equivalent when 6 is equicrescent,

having given x = cos 0.

Replacing -^ by its complete value in (1), the. given

equation becomes

d^y dx — d^x dy x dy y
dx^ r^'^2 dx "^ T^~x^

~

X = cos 6;

.'. dx = — sin 9 dd and cPx = — cos d dB\

1 — a;^ = sin^ 0.

Substituting, we have

— d^y sin dd + cos dO^ dy cos 6 dy ^ _ n— sin^ Bern "^
sii?0 sin 6 dd

"^
sin^fl

~

.-. ^ + 2/ =: 0. (See Price's Calculus, Vol. I, p. 126.)

dr^v 1 dv
3. Transform -^ + - -^ + «/ = 0, in which x is equi-

crescent, into its equivalent, (1) when neither y nor is

equicrescent; (2) when is equicrescent; (S) when « is

equicrescent, having given x^ = id,
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Keplacing in this equation the complete Talue of -~, it

becomes

^ydx—(Pxdy ,
1 ^ , ,. _ ^

ds^
'^ xdx^ ^

~

a; = 2 (0)4; /, dx = e-ide.

^. = _^; + .^^^.

Substituting, we have

(i.) y de^ + dy dff' + dd^ydd — edy d^d = 0.

{2.) When 6 is equicrescent, <^0 = ; therefore (1) be-

comes

y de^ + dydea + (?(^3«/(?(9 = 0,

or 6 —- -)—^ -I- « = 0.d^^ d9^ ^

(3.) When y is equicrescent, (^^i/ = ; therefore (1) be-

comes

'df-\d0-y\dy) = ''-

4. Transform R = =—•=- into its equivalent, {!) in

dx^

the most general form
; {2) when 6 is equicrescent

; {3)

when r is equicrescent, having given x = r cos 6, and

y = r sin 0.

The complete value of R is

^ _ {dx^ + <?«/*)'

<^a;rf«/ — ^ydx

dx — dr cos 6 — r sin 6 d 6,

dy = dr sinO + r cos rf ft
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cPx = COS e cPr — 2 sin 6 drdd — r cos 6 d^
— r sin S d^O,

d?y = sin 9 dV + 2 cos d drdd — r sin dO^
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X = ^{r, 6) and y = xp (r, 6)

;

(1)

then II may be regarded as a function of r and 0, through

uU dxL
X and w. It is required to find the values of -r- and -^ in" ^ dx ay

terms of derivatives of u, taken with respect to the new
variables r and Q.

Since m is a function of r through x and y, we have

(Art. 82),

du _ du dx du dy

dr ~ dx dr dy dr ^ '

And similarly

du _ du dx du dy . ,

de ~ didd^ dyde' ^^>

where the values of -y-_, ~, -j-, -^, can be found from (1).

Whenever equations (1) can be solved for r and 6 sepa-

rately, we can find by direct differentiation the values of

dr dr dd dd -, ^ , ,,.,,
-p,

-J-,
-1-, -T-, and hence by substitutmg m

du dtidr du dd

dx ~ dr dx dd dx

'

, du du dr du dd , .
, „„.

^^*
Ty-drcTy + dery^^^-^^^'

we can obtain the values of t- and t—dx dy

When this process is not practicable, we can obtain their

values by solving (2) and (3) directly, as follows

:

Multiply (2) by ^ and (3) by -^ and subtract ; then

multiply (2) by ~ and- (3) by -^ and subtract. We shall

tJi?n hS'Ye two equations, from which we obtain,
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du dy du dy

du _ dr do dO dr

dx dx dy dy dx '

'WrM~dr dB

du dx du dx

(*)

, du _dd dr dr dd . ,

dy ~ dx dy dy dx ^ '

dr dO dr d.d

The values of y-^, -i—j, etc., can be obtained from these,

but the general formulae are too complicated to be of much
practical use. (See Gregory's Examples, p. 35.)

Cor.—If a; = »• cos 9 and y =^ r sm B, (4) and (5)

become

du „ du sin 6 du du cos 6 du . . du

dx dr r da ' dy r dd dr

EXAMPLES.

1. M = ?Jll, to find du (Art 81).

_ a {xdy - ydx)

2. M = sin ax + sm by + tan~i -•

du =: a cos axdx + 5 cos 5wi?v H ^—^ •

o • -1 ^
3. M = sm 1 -•

y
, _ ^& — xdy

y 's/y^ — ^

4. « = sin (a; + y).

du = cos (a; + y) (dx + (?y).



5.
__ jgy

z^ — a^

_ X if —c?) (^ydx + xdy) — 'Hx^yzdz~
(z^ — aFf

vr _— V^ — yy

y Vx^ — y*

7. u = cot a^ to find (^ (Art. 82, Cor. 1).

(-=- ) = — 3? cosec^ a;?' ( - + log ;;; -^Y

8. M = sin (?/^ — z), and ?/ = log x, z=x% to find (-^')

(Art. 83).
^"'^'

ldu\ _ 2 (y — x^) cos (y^ — a)

9. M = log tan -•

y-'^tx

if' sin - cos -
^ y y

10. u = log (x — a -\- '^^ — 2aa;).

ld'<A _ 1^

\dxl ~ Va;^ _ 3fla;'

11. if M = a:^^^ + e'j'^z^ + ^y"^^, show that

6e'«/«2 + 8^2. (Art. 83.)
do^dydz

12. If M = tan~i -—

-

, show that
y/l -{ 0? -\- y^

dH _ 1 dhi _ ISx?/

^^ " (r+^2~+ 2/8)4' ^^~^ ~ (T+^a^ + y^"



13. u = a^f + y^af to find cPu (Art. 85).

% = QxyMx^ + Gx^ydxdy + %yHo^ + %xy^dxdy

+ &x^ydxdy + 'Ha^dy^ + QxyHxdy + Qx^ydy^

= (Gxy^+2y^)dx^+12{x^y+y'^x)dxdy+{6x^y+2x^)dyK

14. a?- + 2/'- « = 0, to find j^- (Art. 87.)

dy___ _ yxy-^ + y' log y
dx ^y'"^ + xv log X

15. ^^-2/^ = 0.
dy^y^-xy^y^^

" ax x^ — xy log x

16. 2,^(2a-c.)-^ = 0. ^^_J^+i^

17. X? — Saxy + y^ = 0.

18. ye""/ — avP" = 0.

19. a'" + Vsec {xy) = 0.

(/a;
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21. Change the independent Tariable from a; to ^ in

(1 — 3?) -j^ — x-i- = 0, when x = cos t.

d3? dx

Ans. g = 0.

32. Change the independent variable from a; to in

g 2^^y y 0,when:. = tan9.

^ns.
Il + y = 0.

23. Change the independent variable from x to r, and

eliminate x, y, dx and dy, between

, xdy — ydx « j -a
I = —T- -^^ , a; = r cos 0, and « = »• sm o.

.4ws. ^ = -^

—

dr

24. Change the independent variable from a; to « in



CHAPTER VIII.

MAXIMA AND MINIMA OF FUNCTIONS OF A

SINGLE VARIABLE.

92. Definition of a Masdmum and a Minimum.—If,

while the independent variable increases continuously, a

function dependent on it increases tip to a certain value,

and then decreases, the value at the end of the increase is

called a maximum value of the function.

If while the independent variable increases, the function

decreases to a certain value and then increases, the value at

the end of the decrease is called a minimum value of the

function. Hence, a maximum value of a function of
a single variable is a value which is greater than the

immediately preceding and succeeding values, and a
minimum, value is less than the immediately pre-

ceding and succeeding values.

For example, sin increases as increases till the latter

reaches 90°, after which sin decreases as increases

;

that is, sin is a maximum when is 90°, since it is

greater than the immediately preceding and succeeding

values. Also, cosec <p decreases as
<f>

increases till the latter

reaches 90°, after which cosec (p increases as increases ;

that is, cosec is a minimum when is 90°, since it is less

than the immediately preceding and succeeding values.

93. Condition for a Maximum or Minimum.—If y
be any function of x, and y be increasing as x increases,

the differential of the function is positive (Art. 13), and

hence the first derivative -~- will be fositive. If the func-

tion be decreasing as x increases, the differential of the
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function is negative, and hence the first derivative -^ ^^
be negative.

Therefore, since at a maximum value the function

changes from increasing to decreasing, the first derivative

must change its sign from plus to minus ; as the variable

increases. And since, at a minimum value, the functiou

changes from decreasing to increasing, the first derivative

must change its sign from minus to plus. But as a function

which is continuous* can change its sign only by passing

through or oo , it follows that the only values of the

variable corresponding to a maximum or a minim/um,
value of the function, are those which make the first

derivative O or oc

.

94. Gi-eometric Illustra-

tion. — This result is also

evident from geometric con-

siderations ; for, let y = f(x)

be the equation of the curve

AB. At the points P, P', P",

P", the tangents to the curve

are parallel to the axis of x,

and therefore at each of these points the first derivative

/' {x) = 0, by Art. 56^

We see that as x is increasing and y approaching a

maximum value, as PM, the tangent to the curve makes

an acute angle with the axis of x ; hence, approaching P

At P the tangent becomes parallel

M M' M" M^'M"

Fig. 9.

from the left -,- is '+

dx
dy

to the axis of x ; hence, -.- = 0.
dx

Immediately after pass-

ing P the tangent makes an obtuse angle with the axifc

of x ; hence, -j- is —

.

* In this discasBioD the fanction ie to he regarded as conHntiout.
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Also in approaching a minimum value, as P'M', from the

left, we see that the tangent makes an obtuse angle with

the axis of x, and hence -i- is — . At the point P,
-f-
= 0.

CbX dx

After passing P', the angle is acute and -=,- is +.
C130

In passing P'", -^ changes sign by passing through qo
,

P"'M"' is a minimum ordinate. In approaching it from the

left the tangent makes an obtuse angle with the axis of x,

and hence -^ is — . At P'" the tangent is perpendicular

to the axis of x, and -^ = qo . After passing P"'M"', the

angle is acute and -7^ is +.

While the first derivatiTe can change its sign from + to

— or from — to + only by passing through or 00 , it

does not follow that because it is or 00, it therefore

necessarily changes its sign. The first derivative as the

variable increases may be +, then 0, and then +, or it may
be — , then 0, and then — . This is evident from Pig, 9,

where, at the point D, the tangent is parallel to the axis of

X, and ~- is 0, although just before and just after it is —

.

Hence the values of the variable which make -;- = or 00

,

ax

are simply critical* values, i. e., values to be examined.

As a maximum value is merely a value greater than that

which immediately precedes and follows it, a function may
have several maximum values, and for a like reason it may
have several minimium values. Also, a maximum value

may be equal to or even less than a minimum value of the

same function. For example, in Pig. 9, the minimum P'M'

is greater than the maximum P'M''.

* See Price's Cal., Vol. I, p. Wi,
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95. Method of Discriminating between Maxima
and Minima.—Since the first deriTative at a maximum.

state is 0, and at the immediately succeeding state is — , it

follows that the second derivative, which is the difference

between two consecutive first derivatives,* is — at a maxi-

mum. Also, since the first derivative at a minimum state

is 0, and at -the immediately succeeding state is +, it fol-

lows that the second derivative is + at a minimum. There-

fore, for critical values of the variable, a function is at a
maximum or a minimum state according as its

second derivative at that state is — or +.

96. Condition for a Maximum or Minimum given

by Taylor's Theorem.—Let m =f{x) be any continuous

function of one variable ; and let a be a value of x corre-

sponding to a maximum or a minimum value of f{x).

Then if a takes a small increment and a small decrement,

each equal to h, in the case of a maximum we must have,

for small values of h,

/(a) > /(« + h) and /(a) > f(a ^ h)

;

and for a minimum,

/(«) < / (« + h) and /(«) < f{a - Ji).

Therefore, in either case,

f[a + h)-f{a) and f{a-h)-f{a)

have both the same sign.

By Taylor's Theorem, Art. 66, Eq. 7, and transposing,

we have

/(« + A) -/(«)= /'(«) /^ +/"(«)
I'
+ etc.; (1)

f{a - h) -/(«) = -/' (a) h +/" (a)
J
- etc. (2)

* Remembering that the flrst value is always to be subtracted from the second.



FINDING MAXIMA AND MINIMA VALUES. 155

Now if h be taken infinitely small, the first term in the

second member of each of the equations (1) and (2) will be

greater than the sum of all the rest, and the sign of the

second member of each will be the same as that of its first

term, and hence /(a + A) —/(a) and /{a — Ti) — f{a)

cannot have the same sign unless the first term of (1) and

(3) disappears, which, since h is not 0, requires that

f{a) = Q.

Hence, the values of x ivhich make f{oc) a maxi-
mum or a minimum are in general roots of the equa-

tion, f (pc) = 0.

Also, when /' {a) = 0, the second members of (1) and

(2), for small values of h, have the same sign as /" {a)
;

that is, the first members of (1) and (2) are both positive

when /" {a) is positive, and negative when /" (a) is nega-

tive. Therefore, /(a) is a maximum or a m^inijnum/

according as f" (a) is negative or positive.

If, however, /" (a) vanish along with /' (a), the signs of

the second members of (1) and (3) will be the same as

/'" (a), and since /'" (a) has opposite signs, it follows that

in this case /"(«) is neither a maximum nor a mini-
mum unless f" {a) also vanish. But if /'" (a) = 0,

then f{a) is a maximum when /"' {a) is negative, and a

minimum when /" {a) is positive, and so on. If the first

derivative which does not vanish is of an odd order, f{a) is

neither a maxijjnum nor a minimum ; if of an even order,

f(a) is. a maximum or a minimum, according as the sign

of the derivative which does not vanish is negative or posi-

tive.

97. Method of Finding Maxima and Minima
Values.—Hence, as the result of the preceding investiga-

tion we have the following rule for finding the maximum
or minimum values of a given function, f{x).

Find its first derivative, f (a?) put it equal to 0,

and solve the equation thus formed, f {x) = 0. Sub-
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stitute the values of x thus found for x in the second
derivative, f" (x). Each value of x which m.akes
the second derivative negative will, ivhen substituted

in the functionf{x) make it a maximum; and each
value which niahes the second derivative positive will

make the function a minimum. If either value of

X reduces the second derivative to 0, substitute in the

third, fourth, etc., until a derivaMve is found which
does not reduce to 0. If this he of an odd order, the

value of X will not make the function a maximum
or minimum ; but if it be of an even order and nega-

tive, the function will be a maximum ; if -positive, a
Tninimum.

Second Rule.—It is sometimes more convenient to

ascertain whether a root a of /" (o:) = corresponds to a

maximum or a minimum value of the function by substi-

tuting for X, in /' (x), a — h and a + h, where h is infini-

tesimal. // the first result is + and the second is —

,

a, corresponds to a maximum ; if the first result is

— and the second is + , it corresponds to a minimum.
If both results have the same sign, it corresponds to

neither amaximum nor a minim^um. (See Arts. 93, 94)

98. Maxima and Minima Values occur alternately.

—Suppose that f{x) is a maximum when x ^ a, and also

when a; = &, where b y a; then, in passing from a to b,

when .r = a + A (where h is very small), the function is

decreasing, and when a;= 5 — h, it is increasing; but in

passing from a decreasing to an increasing state, it must

pass through a minimum value ; hence, between two maxi-

ma one minimum at least must exist.

In the same way, it may be shown that between two

minima one maximum must exist.

This is also evident from geometric considerations, for in

Fig. 9 we see that tliere is a maximum value at P, a mini-

mum at P', a maximum at P", a minimum at P'", and so on.
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99. The Investigation of Masima and Minima is

often facilitated by the following Asdomatic Prin-

ciples :

1. If M be a maximum or minimum for any value of x,

and « be a positive constant, au is also a maximum or mini-

mum for the same value of x. Hence, before applying the

rule, a constant factor o?" divisor may he omitted.

3. If any value of x makes u a maximum or minimum,
it will make any positive power of u a maximum or mini-

mum, unless %i be negative, in which case an even power of

a minimum is a maximum, and an even power of a maxi-

mum is a minimum. Hence, the function may he raised

to any power ; or, if under a radical, the radical may
he om,itted.

3. Whenever m is a maximum or a minimum, log m is a

maximum or minimum for the same value of x. Hence,

to examine the logarithm of a function ive have only

to examine the function itself. When the function con-

sists of products or quotients of roots and powers, its exam-

ination is often facilitated by passing to logarithms, as the

differentiation is made easier.

4. When a function is a maximum or a minimum, its

reciprocal is at the same time a minimum or a maximum
j

this principle is of frequent use in maxima and minima.

5. If M is a maximum or minimum, t( ± c is a maximum
or minimum. Hence, a constant connected hy + or —
may he om,itted.

Other transformations are sometimes useful, but as they

depend upon particular forms which but rarely occur, they

may be left to the ingenuity of the student who wishes to

simphfy the solution of the proposed problem.

It is not admissible to assume a; = oo in searching for

maxima and minima, for in that case x cannot have a suc-

ceeding value.
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EXAMPLES.

1. Find the values of. x -which will make the function

uz=Qx -\- Zx^ — 4a;* a maximum or minimum, and the cor-

responding values of the function u.

Here ^' ^- 6 + 6a; - l%xK
dx

Now whatever values of x make u a maximum or mini-

du
mum, will make -i- = (Art. 97) ; therefore,

6 + 6a; — l%x^ = 0, or x^ — \x = \;

.-. a; = i ± f = + 1 or - i.

Hence, if u have maximum or minimum values, they

must occur when a; = 1 or — ^.

To ascertain whether these values are maxima or minima,

we form the second derivative of u; thus,

^ - 6 - 24a;
da? - ^ ^^

When x = l, y-^ = — 18, which corresponds to a maxi-

mum value of u.

When a; = — ^, ;7-j = +18, which corresponds to a

minimum value of u.

Substituting these values of x in the given function, we
have

When x=-l, u =6 + 3 — 4 = 5, a maximum.
When a;=— |, ?« = — 3 + f + |=— J, a minimum.

3. Find the maxima and minima vahies of u in

u = a^—%x^ + 23a;' — 24a; + 12.

^ = 4a;s _ 34^2 + 44^; _ 24 = 0,
dx
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or, a? — 6x^ + 11a; — 6 = 0.

By trial, a; = 1 is found to be a root of this equation

;

therefore, by dividing the first member of this equation by

X — 1, we find for tlie depressed equation,

x^ — ox + 6 =0; .: a; = 2 or 3.

Hence the critical values are a; = 1, a; = 2, and a; = 3.

^ = 12x» _ 48a; + 44 = + 8, when a; = 1.

= — 4, when a; = 2.

= + 8, when a; = 3.

Therefore we have,

when a; = 1, u = 3, a minimum
;

when a; = 3, m = 4, a maximum

;

when a; = 3, m = 3, a minimum.

3. Find the maxima and minima values of u in

u — (x — ly {x + 2)».

^ = 4 (a; — l)3(a; + 2f + 3 {x + 2f(x — ly

= {x-iy{x + if [4 {x% 2) + 3 \x — 1)],

"' ^=(^-l)M^ + 3)^(7^ + 5) = 0; (1)

.'. (a; — I) = 0, (a; + 2) = 0, (7a; + 5) = 0.

.'. a; = 1, a; = — 2, and a; == — f, as the critical values

of X.

In this case, it will be easier to test the critical values by

the second rule of Art. 97; that is, to see whether -j-

changes sign or not in passing through a; = 1, — 2, and

— 4" in succession.
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If we substitute in the second member of (1), (1 — h)

and (1 4 A) for x, where A is infinitesimal, we get

^!f = (l-A-l)i'(l-A + 2)«[7(l-A) + 5]

= _ A3 (3 _ ]iY (13 _ 7/j) = _.

and ^ = (1 + A - 1)3(1 + A + 3)2 [7 (1 + li) + 5]

Therefore, as -j- changes sign from — to + at a; = 1,

the function u at this point is a minimum.

When a; = — 2, y- does not change sign ; /. u has no

maximum or minimum at this point.

When a; = —
f, -^ changes sign from + to — ; .•. u,

at this point, is a maximum.

Hence, when rr = 1, m = 0, a minimum.

134.93
when x= — f, u = —^;n— , a maximum.

It is usually easy to see from inspection whether -^

changes sign in passing through a critical value of x, with-

out actually making the substitution.

4. Examine u = b + {z — a)^ for maxima and minima.

— = 3 (a; — a)2 = ; .•. x = a, and u = b.

d u
Since x = a makes -v-^ = 0, we must examine it by the

dii
second rule of Art. 97, and see whether t- changes sign at

z = a.
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-^ = 3 (a — A — a)^ =r 3^2 is the value of -r- immediately

preceding a; = a.

-^ = 3 (a + A — a)2 = SA^ is the value of -j- immediately

succeeding x=za.

Therefore, as -^ does not change sign at a; = a, m = 5

is neither a maximum nor a minimum.

5. Examine u = 1 + {x — a)^ for maxima and minima.

T- = 4 (a; — a)^ = ; .•. x z= a and u = b.
ax ^ '

d'U/

It is easy to see that -5- changes sign from — to + at

x-=a', .•.»;=« gives m = 5, a minimum,

(x + ^Y
6. Examine m = 7 —~ for maxima and minima.

{x - dy

du (x + 2)2 (x — 13)

.: X = — 2, 13, or 3.

"We see that when a; = — 2, -j- does not change sign

;

.•. no maximum or minimum

;

when ar = 13, -^ changes sign from — to + ;

.•. a minimum

;

when a; = 3, -j- changes sign from + to — .

.•. a maximum

;

hence when a; = 13, u — J-p, a minimum value

;

and when a; = 3, m = 00 , a maximum value.
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7. Examine m = 6 + (a; — «)^ for maxima and minima.-

-^ = Ka; — fl)i = ; .'. x z= a and u = I.

When x = a, -T- changes sign from — to +.

X =. a gives u = i, a minimum.

8. Examine u=-'b — {a — x)^ for maxima and minima.

-=- = !(« — x)^ = : .•. a; = ffl and u = h.

dx ^^

When a; = a, J- changes sign from + to —

.

.'. a; = a gives w = 5, a maximum.

9. Examine m = 5 + ^/a^ — 3a*a; + aa;^ for maxima and

minima.

If « is a maxima or minima, u — t will be so ; therefore

we omit the constant 5 and the radical by Art. 99, and get

u! = 0? — %a?x + ai&

;

dv!
-^-^ =z — 3a* + 2ax = 0; .•. a; = a and u = i.
ax

du'
When a; = a, -5— changes sign from — to +.

.*. x=:a gives u = b, a minimum.

a^a;
10. Examine u = -. cm for maxima and minima.

(a — x)^

Using the reciprocal, since it is more simple, and omitting

the constant a* (Art. 99), we have

u = ^ = 2a + x;
X X '

du' a^
, , r. J ePiJ'' 2a2

••• ^ = -^. + 1 = 0, and ^ = ^;



EXAMPLES. 163

, cPu' 2
.'. X = ± a, and .-. -5--^ = ± —

Hence, a; = + « makes u' a minimum, and a; = — a

makes it a maximum ; therefore, since maxima and minima

values of u' correspond respectively to the minima and

maxima values of u (Art. 99, 4), we have,

when X ^^ a, u = x, a maximum.

" X = — a, u = —-, a minimum.
4

Find the values of x which give maximum and
m/inimum values of the following functions

:

" ''

1. u = ^ — Zx^ — 2ix + 85. ^-

Ans. X = — 2, max, ; a; = 4, min.

2. u = 20? — 2\x> + 36a; — 20.

X z= 1, max.; a; = 6, min.

3. M = a;s — 18a;2 + 96a; — 30.

a; = 4, max. ; a; = 8, min.

4. u = —-• X = ±a, mm.
a — 2x *

K 1 + 3a;
, ,

5. M =: —— a; = — 1^, max.
V 4 + 5x

6. u = 'X? — 3x» — 9a; + 5.

a; = — 1, max. ; a; = 3, min.

7. u = a? — 3x> + 6x+'r.

Neither a max. nor a min.

8. u = {x- 9)5 (x — Sy.

X = S, max. ; x = 8^, mia

9. M = :;—

;

7 a; = COS a;, max.
1 + X tan a;

10. u ^= sin^ a; cos x. x = 60°, max.

t-i sma; .„
11. u = :z

——

r

X = 45 , max.
1 +-tan X
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13. u = sin a; + cos x.

:c = 45°, max. ; x = 225°, min.

13. u = ^^-
an*

X = e", max.

GEOMETRIC PROBLEMS.
The only difficulty in the solution of problems in maxima and

minima consists in obtaining a convenient algebraic expression for the

function whose maximum or minimum value is required. No gen-

eial rule can well be given by which this expression can be found.

Much will depend upon the ingenuity of the student. A careful ex-

amination of all the conditions of the problem, and tact in applying

his knowledge of principles previously learned in Algebra, Geometry,

and Trigonometry, with experience, will serve to guide him in form-

ing the expression for the function. After reducing the expression to

its simplest form by the axioms of Art. 99, he must proceed as in

Art. 97.

1. Find the maximum cylinder which

can be inscribed in a given right cone

with a circular base.

Suppose a cylinder^jiKScribed as in

the figure. Let AO = i, DO = a,

CO =:x, CB = y.

Then, denoting the volume of the

cylinder by v, we have Fig. 10.

(1)

From the similar triangles DOA and DOE, we have

DO : AO :: DO : EC,

or a I b :: a — X : y;

which in (1) gives V = iT-.(a — xfx. (2)
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Dropping constant factors (Art. 99), we have

(a — xfx = aH — lax^ + x^
;

a^ — 4aa; + Sa;^ =. 0,

— \c? ; .-. a; = ff or ^a.

166

u =

dx
~

or a;^ — 4aa; =

T-: = — 4a + 6a;
aa;2

= 3a, when a; = «, .•. minimum;

= — 2a, when a; = ^a, .-. maximum.

Hence the altitude of the maximum cylinder is one-third

of the cone.

The second value of x in (3) gives

,a
¥)-,

Volume of cone = \T^aV.

.: Volume of cylinder — ^ volume of cone.

y z= -(a — \a) = |5 = radius of base of cylinder.

2. What is the altitude of the

maximum rectangle that can be in-

scribed in a given parabola ?

Let AX = a, AH = x, DH == y,

and A = area of rectangle. Then _

we have

A = 2y{a — x).

But from the equation of the parabola, we have

y = V2px,

which in (1) gives A = 2V^px (a — x).

u' = v'a; (a — x) = aa;' — xk

du'

m

-j- = i^ax-i — fa;^ = 0. .-. x = ^a.
dx
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Since this value of x makes -7- change sign from + to

— , it makes the function A a maximum; therefore the

altitude of the maximum rectangle is fa.

3. What is the maximum cone that

can be inscribed in a given sphere ?

Let ACB be the semicircle, and ^

ACD the triangle which, revolved

about AB, generate the sphere and

cone respectively. Let AO = r, AD
and V = volume of cone.

Then v = \-nyh>. (1)

But 2/2 = AD X DB = {%r — x) x,

which in (1) gives v z= \-n {2r — x) x% (2)

or u = %rx^ — 0?
;

.-. ^ = 4ra; - 3a;a = 0. .,)(/f .

ax --'
(,

1

and ^r.

dx

dtb
The latter maikes -^ change sign from + to — ; .-. it

makes v a maximum.
Hence the altitude of the maximum cone is f of the

diameter of the sphere.

The second value of x in (2) gives

v^\-n (2r - |r) {^f = ffTrr^ = ^ X %-r^r^.

Volume of sphere = ^-nr^
;

•'. the cone = ^ of the sphere.

4. Find the maximum parabola which can be cut from a

given right cone with a circular base, knowing that the area

of a parabola is | the product of its base and altitude.
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Let AB —a, AC = b, and BH = x;

then AH = « — x.

FE = 2EH = 2a/AH^"BH

= 2'\/(« — x)x.

Also, BA:AC :: BH : HD,

or i :: a;: HD=-a;.
a

Calling the parabola A, we have

A — fFE X HD ,= %-x\^{a — x) x.

or aoif — x\

du

dx
:=.3aa? — 4r3 = 0;

X ^ Q anJ X = fa.

The second value makes -y- change sign from + to —

,

and .-. makes the function A a maximum.

A = ! -• faVCa — |«) |a = {abVS,

which is the area of the maximum parabola.

Rem.—In problems of maxima and minima, it is often more con-

venient to express the function u in terms of two variables, x and y,

wliicli are connected by some equation, so that either may be regarded

as a function of the other. In this case, either variable of course may
be eliminated, and u expressed in terms of the other, and treated by

the usual process, as in Examples 1, 3, and 3. It is often simpler,

however, to differentiate the function u, and the equation between x

and 1/, with respect to either of the variables, x, regarding the other,

V, as a function of it, and then eliminate the first derivative, ^. The

second method of the following example will illustrate the process.
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5. To find the maximum rectangle inscribed in a given

ellipse.

B

Let CM = X, PM = y, and

A = area of rectangle. Then we
have _Aj

A = A:xy, (1)

and ay + S^a;' = aW. {%)

1st Method.—Prom (3) we get Fig. 14.

« = - Va^ — x\
^ a

which in (1) gives ^ = 4 - a; -\/a' — x^,

or u = a'x^ — .-c*.

^- = 2a^x — 4:3^
dx

.x= ±
a/2

X = -\ — makes -;- change sign from + to — ; .-.it

makes A a maximum.

Hence, the sides of the maximum rectangle are a a/S

and i V2, and the area is 2ai.

id Method.—Differentiate (1) and (3) with respect to x

after dropping the factor 4 from (1), and get

dA
,

dy .

dx dx

^d^y^ + 25'« = 0;

dy

dx
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2a?y^ = aW, :. y = —= and x — -—=•

6. Find the cylinder of greatest oonyex surface that

can be inscribed in a right circular cone, whose altitude

is h and the radius of whose base is r. „ „ '^hr
Surface = -^•

7- Determine the altitude of the maximum cylinder

which can be inscribed in a sphere whose radius is r.

Altitude = \r Vs.

8. Find the maximum isosceles triangle that can be

inscribed in a circle. An equilateral triangle.

9. Find the area of the greatest rectangle that can be

inscribed in a circle whose radius is r.

The sides are each r V^.
10. Find the axis of the cone of maximum convex sur-

face that can be inscribed in a sphere of radius r.

The axis = |r.

11. Find the altitude of the maximum cone that can be

inscribed in a paraboloid of revolution, whose axis is a, the

vertex of the cone being at the middle point of the base of

the paraboloid. Altitude = ^a.

12. Find the altitude of the cylinder of greatest convex

surface that can be inscribed in a sphere of radius r.

Altitude = r V2.

13. From a given surface s, a vessel with circular base

and open top is to be made, so as to contain the greatest

amount. Find its dimensions. (See Eemark under Ex. 4.)

The altitude = radius of base =^ i/ ^r--
' an

14. Find the maximum cone whose convex surface is

constant. The altitude — V^ times the radius of base.

15. Find the maximum cylinder that can be inscribed in

an oblate spheroid whose semi-axes are a and i.

- 2
The radius of base = a Vf ; the altitude = b —-•

V3
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16. Find the maximum difference between the sine and

cosine of any angle. When the angle = 135°.

17. Find the number of equal parts into which a must

be divided so that their continued product may be a

maximum.
Let X be the number of parts, and thus each part equals

-, and therefore u = (-) , from which we get a; = -

;

a

therefore each part = e, and the product of all = (e)'.

18. Find a number x such that the xth root shall be a

maximum. x = e = 2.71838 + .

19. Find the fraction that exceeds its m'* power by the

greatest possible quantity. / 1 \si-T

\m I

20. A person being in a boat 3 miles from the nearest

point of the beach, wishes to reach in* the shortest time a

place 5 miles from that point along the shore ; supposing

he can walk 5 miles an hour, but row only at the rate of

4 miles an hour, required the place he must land.

One mile from the place to be reached.

21. A privateer wishes to get to sea unmolested, but has

to pass between two lights, A and B, on opposite head-

lands, the distance between which is c. The intensity of

the light A at a unit's distance is a, and the intensity of B
at the same distance is 6 ; at what point between the lights

must the privateer pass so as to be as little in the light as

possible, assuming the principle of optics that the intensity

of a light at any distance equals its intensity at the distance

one divided by the square of the distance from the light.

a^ + b^

22. The flame of a candle is directly over the centre of a

circle whose radius is r ; what ought to be its height above

the plane of the cii'cle so as to illuminate the circumfer-

ence as much as possible, supposing the intensity of the
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light to vary directly as the sine of the angle under which

it strikes the illuminated surface, and inyersely as the

square of its distance from the same surface.

Height above the plane of the circle = r Vi-
33. Find in the line joining the centres of two spheres,

the point from which the greatest

portion of spherical surface is

visible.

The function to be a maximum
is the sum of the two zones whose

altitudes are AD and ad; hence

we must find an expression for the areas of these zones.

Put CM = E and cm — r, Gc = a and CP = x.

The area of the zone on the sphere which has R for its

radius (from Geometry, or Art. 194) = SwRAD = '^nW

— 27rROD = 2:1- (
R^ ^l, and in the same way for the

other zone, from which we readily obtain the solution.

_ aRi

R^ + r-*

24. Find the altitude of the cylinder inscribed in a sphere

of radius r, so that its whole surface shall be a maximum.

Altitude = r 2

{'-Vl



CHAPTER IX.

TANGENTS, NORMALS AND ASYMPTOTES.

±00. Equations of the Tangent and Normal—Lei

P, {x\ y') be the point of tangency
;

the equation of the tangent line at

(x', y') will be of the form (Anal.

Geom., Art. 35)

y — y' = a{x — x'), (1)

in which a is the tangent of the

angle which the tangent line makes

with the axis of x. It was shown in

Ai'ticle 56ffl that the value of this tangent is equal to the

derivative of the ordinate of the point of tangency, with

respect to X,

dy'

Fig. 16.

or a =
dx'

He?i:;e
^-^'^i^^^-'^')' (3)

is the equation of the tangent to the curve at the point

(x', y'), X and y being the current co-ordinates of the

tangent.

Since the normal is perpendicular to the tangent at the

point of tangency, its equation is, from (3),

y-y dx'

dy
-, {x — x'). (3)

(Anai. Geom., Art. 37, Cor. 3.)
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Rem.—To apply (2) or (3) to any particular curve, we
dy' dx'

substitute for -pj or -^-7 , its value obtained from the equa-

tion of the curve and expressed in terms of the co-ordinates

of the point of tangency.

EXAMPLES.

1. Find the equations of the tangent and normal to the

ellipse

ay + 6V = aW.

^ - , dy Wx dy' W
and this value in (2) gives,

which by reduction becomes,

c?yy' + T^x'il = aW,

which is the equation of the tangent ; and

y-y' = w^''-''"^

is the equation of the normal.

2. Find the equations of the tangent and normal to the

parabola y^ = 2px.

We find f=P, .:% = ^„
dx y ax' y'

and this value in (3) gives
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•• yy' = p(,3: + x'),

which is the equation of the tangent ; and

y-y' = --p{^-^')

is the equation of the normal.

3. Find the equations of the tangent and normal to an

hyperbola.

Tangent, a^yy' — ly'xx' = — aW.

Normal, y-y' = -^{x- x').

4. Find the equation of the tangent to 3y* + a;^ — 5 = 0,

at x = l.

Here ^^ = —^ =
,
„ .„.. = T -39 about,

dx 6y ± 3.465

which in (3) gives

2^^1.155 = T.29(^ — 1),

or y — ^ -392; ± 1.44.

Hence there are two tangents to this locus at a; = 1,

their equations being

y = — .29a; + 1.44 and y = + .29a; — 1.44.

5. Find the equation of the tangent to the parabola

y'^ =z 9a;, at a; = 4.

At (4, 6) the equation is y= fa; + 3.

« (4, — 6) " " " y—— |x- — 3.

6. Find the equation of the normal to y^ = 2x^ — a?, at

a; = l.

At (1, + 1) the equation is y = — 2a; + 3.

« (1, — 1) " " " y= 2x- 3.

7. Find the equation of the normal to y^ = 6x — 5, at

y =z 5, and the angle which this normal makes with the

axis of a;. y = — ^a; + -^ ; angle = tan~^ (— -f).
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101. Length of Tangent, Nonnal, Subtangent,

Subnormal, and Perpendicular on the Tangent firom

the Or^^.

Let PT represent the tangent at

the point P, PN the normal ; draw

the ordinate PM ; then

MT is called the subtangent,

MN " " " subnormal.

Let « = angle PTM; Fig. 17.

then tan «

1st.

2d.

3d.

dx'̂
(Art. 56a).

TM = MP cot « = y'^,;

dx'
Subtangent = «/'-=-;.

MN = MP tan MPN = j^'tan «;

Subnormal = y' -^,-

PT = a/PM* + MT2

4th.

/ ldx'\^
Tangent = y^ 1 + (^j

•

PN = -v/PM^ + MN2

5th. The equation of the tangent at P {x', y') is (Art. 100)^^
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or xdy' — ydx' — x'dy' + y'dx' = ;

which,, written in the normal form, is

'xdt-y^^g^^±idl ^ ^^
'Vidx'f+WY

hence, OD = f__
^ = 0.

^/{d:df + {dy'f

:. Perpendicular on the tangent from the origin

, _ y'dx' — x'dy'

~
^/(dx!Y + {dy'f

ScH.—In these expressions for the subtangent and sub-

normal it is to be observed that the subtangent is measured

from M towards the left, and the subnormal from M towards

dv'
the right. If, in any curve, ^' t^ is a negative quantity, it

denotes that N" lies to the left of M, and as in that case

dx'
y'

-J-,
is also negative, T lies to the right of M.

EXAMPLES.

1. Find the values of the subtangent, subnormal, and
perpendicular from the origin on the tangent, in the ellipse

Here ^Jl - -^It.
dx a?y

Hence, the subtangent = «/'-=—, = —^|^-

,

the subnormal = «' t^. = -x'',
^ dxs 0? '
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the perpendicular from origin on tangent

(ays ^ jva)^

2. Find the snbtaugent and subnormal to the Cissoid

yi =
2a — a;

(See Anal. Geom., Art. 149.)

Here

Hence, the subtangent =

dy' _ ,x^ (3a — x)

(2a — a

X (2fl — x)

A^ (2a - xf

3a — X

the subnormal = -7^ ^4 •

(2a — x)^

3. Find the value of the subtangent of y^^Sa? — 12,

at a; = 4. Subtangent = 3.

4. Find the length of the tangent to y^ = 2x, at a; = 8.

Tangent = 4a/17.

5. Find the values of the normal and subnormal to the

cycloid (Anal. Geom., Art. 156).

= r vers~* - — V^ry — y^;

dx y_ _ '\/2ry—y'^ -
" ^~~

^/^^—f
~ '^r — y'

dy _ 2r — y
dx

Fig. IS.

'\/2ry — y^

.'. Subnormal = V^ry —^ = MO.

Normal = \/2ry = PO.

It can be easily seen that PO is normal to the cycloid at

P; for the motion of each point on the generating circle at
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the instant is one of rotation about the point of contact 0,
('. e., each point for an instant is describing an infinitely

small circular arc whose centre is at ; and hence PO is

normal to the curve, i.e., the normal passes through the

foot of the vertical diameter of the generating circle. Also,

since OPH is a right angle, the tangent at P passes through

the upper extremity of the vertical diameter.

6. Find the length of the normal in the cycloid, the

radius of whose generatrix is 2, at y = 1. Normal = 2.

POLAR CURVES. A/

102. Tangents, Nonnals, Subtangents, Subnor-
mals, and Perpendicular on Tangents.

Let P be any point of the

curve APQ, the pole, OX the

initial line. Denote XOP by

0, and the radius-vector, OP,
by r. Give XOP the infinitesi-

mal increment POQ = dO, then

OQ = ?• + dr. Prom the pole

0, with the radius OP = r, de-

scribe the small arc PR, sub-

tending dd ; then, since dd — ab

is the arc at the unit's distance

from the pole 0, we have

PE = rde and EQ = dr. (1)

Let PQ, the element* of the arc of the curve, be repre-

sented by ds.

:. PQ' = PR^ + EQ^

or d? = T^Ti -f- Tr^. (3)

Pass through the two points P and Q the right line QPT;

* See Art. 56a, foot-note.

\
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then, as P and Q are consecutive points, the line QPT is a

tangent to the curve at P (Art. 56a). Through P draw the

normal PC, and through draw COT perpendicular to OP,

and OD perpendicular to PT. The lengths PT and PC are

respectively called the polar tangent and the polar normal.

OC is called the polar subnormal; OT the polar subtangent

;

and OD, the perpendicular from the pole oh the tangent, is

usually symbolized by ^. The value of each of these lines is

required.

tan EQP = |^ = ^, from (1). (3)

Since OPT = OQT + dd, the two angles OPT and OQT
differ from each other by an infinitesimal, and therefore

OPT = OQT, and hence,

tan OPT = ^, from (3), (4)

sin OPT = sin OQP = 5| = ?^, from (1). (5)

Hence,

i^d6
OT = polar subtangent = OP tan OPT = -^,

from (4). (6)

00 = polar subnormal = OP tan OPC = OP cot OPT
dr

dd
= J, from (4). (7)

PT = polar tangent = VOP* + OT^ = r- V 1 + r^^,

from (6). (8)

PC = polar normal = Vo? + OC^ = yr^ + ^,
from (7). (9)
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OD=p = OF sin OPD =^ from (5) = —-^-

from (a). (10)

See Price's Calculus, Vol. I, p. 417.

EXAMPLES.

1. The spiral of Archimedes, whose equation is r = aB.

(Anal. Geom., Art. 160.)

Here ^^ 1_

dr ~ a'
Subt. = -,from(6).

Subn. = a, from (7)

Tangent;ent = »• y 1 + -,, from (8),

Normal = Vr^ + d?, from (9).

P =
Vr^ + a

2. The logarithmic spiral r

Art. 163.)

Here -j- ^ a^ log a = »• log a

;

r

.
, from (10).

= a^. (Anal. Geom.,

Subt
log a

= mr,

(where m is the modulus of the system

in which log a = 1).

Subn. = -•

P =

Iformal =

mr

^/wfi + 1

Fig. 20,

^2 ^

m^

<fr-2 _ (^3 ^ ^2 iog2 a)i
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Tan. OPT = r^=
'^

dr log a
'

which is a constant; and therefore the curre-cuts erery

radius-vector at the same angle, and hence it is called the

Equiangular Spiral.

If a = e, the Naperian base, we haye,

tan OPT = ,— = 1, and .-. OPT = 45°,
log e

'

and OT = OP = r.

3. Find the subtangent, subnormal, and perpendicular in

the Lemniscate of Bernouilli, i^ ^ c? cos 29. (Anal.

Geom., Art. 154.)

Subtangent = -^—.— -^

;

Or
Subnormal = — - sin 20 :

r

Perpendicular
Vr* + a* sin^ 20 «

-

4. Find the subtangent and subnormal in the hyper-

bolic* spiral rd = a. (Anal. Geom., Art. 161.)

Subt. = — a; Subn. = •

a

RECTILINEAR ASYMPTOTES.

103. A Rectilinear Asymptote is a line which is

continually approaching a curve and becomes tangent to it

at an infinite distance from- the origin, and yet passes

within a finite distance of the origin.

To find whether a proposed curve has an asymptote, we

must first ascertain if it has infinite branches, since if it

* This carve took its name from the analogy between Ita equation and tbat of

the liyperbola xt/ = a- (See Strong's Calculus, p. 145; also Toung's Dif. Calculus,

p. 120.)
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has not, there can be no asymptote. If it has an infinite

branch, we miist then ascertain if the intercept on either

of the axes is finite. The equation of the tangent

(Art. 100) being,

y-y =i^(^-*)'

if we make successively ^ = 0, a; = 0, we shall find for

the intercepts on the axes of x and y, the following :

_ dx

^'-^~ydy'
(by putting x z= x^ and y =. y^,, and dropping accents),

dy
y. = y-xf^.

Now, if for X z= CO both x^ and y„ are finite, they will

determine two points, one on each axis, through which an

asymptote passes. If for y = oo , c^o is finite and y^ infi-

nite, the asymptote is parallel to the axis ot y. If for

a; = 00 , iCo is infinite and y^ finite, the asymptote is parallel

to the axis of x. If both Xa and y^ are infinite, the curve

has no asymptotes corresponding to a; = oo. If both x„

and yo are 0, the asymptote passes through the origin, and

its direction is obtained by CA'aluating ~ for x = ao.

When there are asymptotes parallel to the axis, they may
usually be detected by inspection, as it is only necessary to

ascertain what values of x will make y := <x>, and what

values of y will make x = ao . For example, in the equa-

tion xy = m, a; = makes y = co, and y = makes
a; = CO ; hence the two axes are asymptotes. Also in the

equation xy — ay — bx = 0, which may be put in either

of the two forms,

bx ay
y = or X — — •^ •

X — a y —
y = 00 when a; = ff, and jc = op when y =
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hence the two lines x = a and «/ = 5 are asymptotes to

the cuiTe.

In the logarithmic curve y = a',

y = when x =z — oo
,

therefore the axis of x is an asymptote to the branch in the

second angle.

Also in the Cissoid ifi =
,^ 2a — x'

y = oo when x =2 %a;

hence a; = 3a is an asymptote.

EXAMPLES,

1. Examine the hyperbola

a^y2 _ ]jix^ = _ 05352^ foj. asymptotes.

Here

dy ¥x c^tfl a^ „ .

-f-
— -^ ; .: x^ = X —^ = - — ^ lore X = ± ^

.

ax a'y ' Wx x

y^^y ^- = =Ofor«=±
" ^ a^y y

^ -^
00.

Hence the hyperbola has two asymptotes passing through

the origin.

., dy b^x h 1 .5
Also -f- = -^ = ± ; = ± - for a; = 00

.

dx a'y a / rfl a

Hence the asymptotes make with the axis of x an angle

whose tangent is ± - ; that is, they are the produced

diagonals of the rectangle of the axes.

2. Examine the parabola y^ = 'Hpx for asymptotes.
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Here

-^ z=?-; .: a;o = — J^ = — 00 when x or y = co,
dx y'

"

%p
"

^0 = ^ = 00 when y = ca or a; = oo

.

Hence the parabola has no asymptotes.

The ellipse and circle haye no real asymptotes, since

neither has an infinite branch.

3. Examine y^ = ax'^ + a^ for asymptotes.

"When x=±cc,y— ±(x>; .: the curve has two

infinite branches, one in the first and one in the third

angle.

dy _ 2ax + 3a;'
_

dx ~ Sf^ '

— 3y^ _ ax^ _ a
.: '^o — ^ —

2aa; + 3^3 - ""
2ax + 3x^

~ ~ 3'

when X = aa.

2ax^ + 3x^ _ 3{y^ — a^) —2a^
y^ = y 3^3^2 3yi

ax^ a= 3 , when a; = 00

.

3 {ax^ + afi)^
3

'

Hence the asymptote cuts the axis of a; at a distance

— g , and that of y at a distance ^ from the origin, and as
o o

it is therefore inclined at an angle of 45° to the axis of x,

its equation is

(See Gregory's Examples, p. 153.)

104. Asymptotes Determined by Expansion.—

A

very convenient method of examining for asymptotes con-

sists in expanding the equation into a series in descending



EXAMPLES. 185

powers of x, by the Ibinomial theorem, or by Maclaurin's

theorem, or by division or some other method.

EXAMPLES.

1. Examine 'f = —^— for asymptotes.

Then

2,= ±a:|/—- = ±«.(l + - +^ + etc.) (1)

When a; = 00 (1) becomes

^=±(a^+a). (2)

We see that as x increases, the ordinate of (1) increases,

and when x becomes infinitely great, the difference between

the ordinate of (1) and that of (3) becomes infinitesimal

;

that is, the curve (1) is approaching the line (2) and

becomes tangent to it when a; = oo ; therefore, y=: ±{x+a)
are the equations of two asymptotes to the curve (1) at

right angles to each other.

Another asymptote parallel to the axis of y is given by

a; = a.

2. Examine a? — xy^ -{• ay^ = for asymptotes.

Here y = ±sj^^

Hence, ^ = ± I a; + - 1 are the equations of the two

asymptotes.

By inspection, we find that a; = a is a third asymptote.

^2 \
3. Examine y^^^ -TT'^ f'°'' asymptotes.

a; + 1
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Here y = ± x\l — ^ + etc.)

•*• y = ±^ are the two asymptotes, ji

105. As3anptotes in Polar Co-ordinates.—When
the curve is referred to polar co-ordinates, there will be an

asymptote whenever the subtangent is finite for r = oc

.

Its position also will be fixed, since it will be parallel to the

r94i^s-vector. Hence, to examine for asymptotes, we find

what finite values of 6 make r ^ oo ; if the corresponding

polar subtangent, r^ -j- , which in this case becomes the

perpendicular on the tangent from the pole, is finite or zero,

there will be an asymptote parallel to the radius-vector. If

for r = 00 the subtangent is oo , there is no corresponding

asymptote.

EXAMPLES.

1. Find the asymptotes of the hyperbola c?y^ — V^x^ =
— (fl? by the polar method.

The polar equation is

a'sin^O — 5« 008^(9 = —^- (1)

When r = 00 , (1) becomes, tan^ Q =. —^;
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which is equal to when 0=:tan~M±-); hence both

asymptotes pass through tlie pole.

2. Find the asymptotes to the hyperbolic spiral rO = a.

(See Anal. Geom., Art. 161.)

Here »• = ^ , .: r = oo , when 6 — 0,
u

de a .odd
J- = -„ , and r2— = —a.
dr r^ dr

There is an asymptote therefore which passes at a distance

a from the pole and is parallel to the initial line.

3. Find the asymptotes to the lituus rO^ = a. (Anal.

Geom., Art. 162.)

Here »• = — , .•. r = oo , when = 0.

f=- ^, and r^f = - 2afl^ = 0, when 6 = 0.
dr 1-^ dr

Therefore the initial line is an asymptote to the lituus.

4. Find the asymptotes of the Conchoid of Nicomedes,

r = pseod + m. (Anal. Geom., Art. 151.)

Here r = oo when = zr ; and r^-=- = » when = -•
2 dr ^ 2

Therefore the asymptote cuts the initial line at right

angles, and at a distance p from the pole.

EXAMPLES.

1. Find the equation of the tangent to 3y^—2x^—10 = 0,

at a; = 4. Ans. y — ± .7127a; ± .8909.

a?
2. Find the equation of the tangent to y^ = j , at

3
4 — X

y = 2x — 2 and y = —2x + 2.
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3. Find the equation of the tangent to the Naperian

logarithmic curve, Ans. y z=zy' {x — x' + 1).

4. At what point on y = 3? — ^x^ — 24a; + 85 is the

tangent parallel to the axis of a; ?

dti'
{Here we must put -^ = 0. See Art. 56fl!.]

At (4, 5) and (—2,113).

5. At what point on y^ = ^a? does the tangent make
with the axis of x an angle whose tangent is 3, and where is

it perpendicular ? At (3, 4) ; at infinity.

6. At what angle does the line y = ^x + 1 cut the curve

y^ = 4rX? [Find the point of intersection and the tangent

to the curve at this point; then find the angle between this

tangent and the given line.] 10° 14' and 33° 4'.

7. At what angle does y^ = 10a; cut x^ + y^ := 144 ?

71° 0' 58".

8. Show that the equation of a perpendicular from the

focus of the common parabola upon the tangent is

«'

9. Show that the length of the perpendicular from the

focus of an hyperbola to the asymptote is equal to the semi-

conjugate axis.

10. Find the abscissa of the point on the curve

^ (a; — 1) (a; — 3) = a; — 3

at which a tangent is parallel to the axis of x.

X =3 ± V^.

11. Find the abscissa of the point on the curve

y^ = (x — fl)2 {x — c)

at which a tangent is parallel to the axis of x.

2c + a
X = —=—

•
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12. Find the subtangent of the curve y =

Ans.

V'^a — X

X (3a — x)

3a — X

13. Find the subtangent of the curve y^—3axy+afi= 0.

2axy — x^

ay — x^

14. Find the subtangent of the curve xy^ = a^{a — x).

2 {ax — a?)

a

15. Find the subnormal of the curve y'^ = 2(j^ log x.

t.
x

16. Find the subnormal of the curve 3ay^ + a^ = 2a;*»

a

a?
17. Find the subtangent of the curve y^ =

a — X

2x (a — x)

3a — 2x
18. Find the subtangent of the curve

a?y^ = (a + a;)^ {&^ — x^).

x{a + x)(¥ — x^)

19. Find the subnormal, subtangent, normal, and tangent

in the Catenary

Subnormal = jle' — e «); normal =
c

Subtangent = ———;
; tangent = ^•
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20. Find the perpendicular from the pole on the tangent

in the lituus rO^ = a. 2a^r

21. At what angle does y^ = 'Zax cut x^—3axy+y^ = ?

cot~i A^i.

22. Examine y^^2x + 3a;' for asymptotes.

y — Vs X+—- is an asymptote.
V3

23. Examine y^ = 6x> + 3^ for asymptotes.

y = x + 2 is an asymptote.

24. Find the asymptotes of j/^ (x — 2a)=:x^ — a\

x=2a; y= ±(x + a)/

25 Find the asymptotes of « = ^Jzll^-±^.^ ^ x^ — Zbx +W
x = i; x = 2b; y = x — 3(a — b).



CHAPTER X.

DIRECTION OF CURVATURE, SINGLE POINTS,

TRACING OF CURVES.

106. Concavity and Convexity.—The terms concav-

ity and convexity are used in mathematics in their ordinary

sense. A curve at a point is concave towards the axis of x

when in passing the point it hes between the tangent and

the axis. See Fig. HI. It is convex towards the axis of x

when its tangent lies between it and the axis. See

Fig. 32.

If a curve is concave down-

wards, as in Fig. 21, it is plain

that as X increases, a decreases,

and hence tan « decreases j that

dy
is as X increases, -r^ (Art. 56rt)

decreases ; and therefore the de-

rivative of ~ or -— is negative.
dx dx' °

In the same way if the curve is

convex downward, see Fig. 22, it is

plain that as x increases, a in-

creases, and therefore tan a in-

creases ; that is, as x increases.

Fig. 21,

(Art. 12.)

dy .

increases, and therefore the de-
dx

rivative of
dy d^y .

-^- or -y^ IS positive.
dx dx'

Hence the curve is concave or convex downward according

as ~ IS — or 4-,
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This is also evident from Fig. 33, where MM' = M'M"
= dx ; PP' is common to the two curves and the common
tangent. PE = PR' = dx ; and P'R

= P^R'. But P"R' > PjR' > PiR'.

Now P'R and P"R' are consecutive

values of dy in the upper curve,

and P'R and P,R' are consecutive

values of dy in the lower cuitc, and

hence P"R' - P'R = <? {dy) = d^y is

+ , and P,R' — P'R = d^y is — ; that

is, d^y is — or +, according as the

curve is concave or convex downwards.

The sign of -r^ is of course the same as that of d^y,

since dx^ is always positive.

We have supposed in the figures that the curve is above

the axis of x. If it be below the axis of x, the rule just

giTcn still holds, as the student mav show by a course of

reasoning similar to the above.

If the curve is concave downwards, -r4 is — ; if it be
ax*

above the axis of a;, ^ Is + ; therefore, y -~^is —; if the

curve be concave upwards, -7^ is +; if it be below the

axis oi X, y \s — ', therefore, y-^\s —
; that is, y -^

- when the curve is concave towards the axis of x. InIS

/%,-.the same way it may be shown that y -^ is +, when the

curve is convex towards the axis of x.

107. Polar Co-ordinates.—A curve referred to polar

co-ordinates is said to be concave or convex to the pole at

any point, according as the curve in the neighborhood of

that point does or does not lie on the same side of the tan-

gent as the pole.
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It is evident from Fig. 24, that when the curve is con-

cave toward the pole 0, as r increases j} increases also, and

dv
therefore -j' is positive ; and if the curve is convex toward

the pole, as r increasesp decreases, and

therefore t- is negative. If therefore

the equation of the curve is given in

terms of r and d, to find whether the

curve is concave or convex towards the

pole, we must transform the equation

into its equivalent between r and p, by

means of (10) in Art. 102, and then find
d̂p

Fig. 24.
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^^^
dO

"^ ~
2d ~ ~ 2^^'

'
d(fi~ 4a*'

which in (10) of Art. 102 gives,

_ 2o?r . .
dr_ _ (4a* + f^)^

^ ~
(^ + 4a4)i'

' dp ~ 2fl2(4«* — r*)'

Therefore the curve is concave toward the pole for values

of ?• < a V2, and convex for r > a \/2.

4. Find the direction of curvature of the logarithmic

spiral r = a^.

By Art. 102, Ex. 3,

mr dr Vm^ + 1

P
Vm^ + 1 m

which is always positive, and therefore the curve is always

concave toward the pole.

SINGULAR POINTS.

108. Singular Points of a curve are those points

which have some property peculiar to the curve itself, and

not depending on the position of the co-ordinate axes.

Such points are : 1st, Points of maxima and minima ordi-

nates ; 2d, Points of inflexion ; 3d, Multiple Points ; 4th,

Cusps ; 5th, Conjugate points ; 6th, Stop points ; 7th,

Shooting points. We shall not consider any examples of

the first kind of points, as they have already been illus-

trated in Chapter VIII, but will examine very briefly the

others.

109. Points of Inflexion.—A point of inflexion is a

point at which the curve is changing from convexity to

concavity, or the reverse ; or it may be defined as the

point at which the curve cuts the tangent at that point.

When the curve is convex downwards, -=-| is + (Art.
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106), and when concave downwards, -— \b — ; therefore,
ax' '

at a point of inflexion ^ is changing from + to — , or

from — to +, and hence it must be or oo. Hence to

find a point of inflexion, we must equate -^-^ to or oo

,

and find the values of x ; then substitute for x a value a

little greater, and one a little less than the critical value
;

if -7^ changes sign, this is a point of inflexion.

EXAM PLES.

1. Examine y = h + {x — a)* for points of inflexion.

Here g = 6(a;-«) = 0;

.•. x z= a and hence y ^=.h.

This is a critical point, i. e., one to be examined ; for if

there is a point of inflexion it is at a; = a. For « > a,

-^ is + , and for x -Ca, -^, is — . Hence there is a point
dx^ dx^ ^

of inflexion at (a, I).

2. Examine the witch of Agnesi,

x^y = 4a' (3a — y),

for points of inflexion.

There are points of inflexion at I ± —-=, -^-l-

3. Examine y = i -^ {x — a)-^ for points of inflexion.

There is a point of inflexion at {a, i).

4. Examine the lituus for points of inflexion.

By Art. 107, Ex. 3, -~ is changing sign from + to —

when r = a V^, indicating that the lituus changes at this
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point from concavity to convexity, and hence there is a

point of inflexion at r = a V^.

110. Multiple Points.—A multiple point is a point

through which two or more branches of a curve pass. If

two branches meet at the same point, it is called a double

point ; if three, a triple point ; and so on. There are two

kinds : 1st, a point where two or more branches intersect,

their several tangents at that point being inclined to each

other ; and 3d, a point where two or more branches are

tangent to each other. The latter are sometimes called

points of osculation.

As each branch of the curve has its tangent, there will

be at a multiple point as many tangents, and therefore as

many values of -=^ as there are branches which meet in

this point. If these branches are all tangent, the values of

~ will be equal. At a multiple point y will have but one

value, while at points near it, it will have two or more

values for each value of x. In functions of a simple form,

such a point can generally be determined by inspection.

After finding a value of x for which y has but one value,

and on both sides of which it has two or more values, form

-—• If this has unequal values, the branches of the curve

intersect at this point, and the point is of the first kind. If

~- has but one value, the branches are tangent to each

other at this point, and the point is of the second kind.

When the critical points are not readily found by inspec-

tion, we proceed as follows

:

Let /(x,y) = (1)

be the equation of the locus freed from radicals. Then



du

dy dx
^

dx ~ du '

dy

and as differentiation nerer introduces radicals vhen they

do not exist in the expression differentiated, the value of

-J-
cannot contain radicals, and therefore cannot have sev-

eral values, unless by taking the form ^•

Hence we have -f-=.- or t- = 0, and -:=- = 0, from
dx dx dy

which to determine critical values of x and y. If these

values of x and « found from -^ = and ^j- = are real" dx dy

and satisfy (1), they may belong to a multiple point. If y
has but one value for the corresponding value of x, and on

both sides of it y has two or more real values, this point is a

multiple point. "We then evaluate -j-^^-?., and if there

are several real and unequal values of -j- , there will be as

many intersecting branches of the curve passing through

the point examined. (See Courtenay, p. 190.)

EXAMPLES.

1. Determine whether the curve y = (a; — a)'^ + 5

a multiple point.

Here y has two values for every

positive value of a; > or < a. When
a; =: or a, y has but one value, I

;

hence there are two points to be ex-

amined. When a; < 0, y is imagi-

nary ; hence the branches do not

pass through the point (0,5), and Fig. 25.
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therefore it is not a multiple point. When a; > or < a, ^
has two real values, and therefore [a, i) is a double point.

Therefore the point is of the first kind, and the tangents

to the curve at the point make with the axis of x angles

whose tangents are + Va and — Va.

2. Examine a^ + 2ax^i/ — ay^ = for multiple points.

We proceed according to the second method, as all the

critical points in this .example are not easily found by inspec-

tion.

^ = 4x{a? + ay)=0; (1)

^ = a{2x^-3f)=0', (3)

dy id? + iaxy

dx~ Zay^ — 2aoi?'

Solving (1) and (2) for x and y, we find

e
= oy ix = iflSA/A Ix = - ^a\/6\
= 0/' \y= -fa/' \^= -|« /•

Only the first pair will satisfy the equa-

tion of the curve, and therefore the ori-

gin is the only point to be examined.

Evaluating ^ in (3) for a; = and

y = 0, and representing ~ by p, and -^^ ° dx •'
^' dx Fig. 26.

by p', for shortness, we have

(3)
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dx

43? + iaxy= p =
2ax^ 0'3ay^

_ 12a;' + 4ay + iaxp

Hayp — iax

_ 24a: + 8ap + 4a^'
~

6aj»' + 6ayp' — 4a

_ 8a^

when

= t; , when

/a; = 0\

Vy = o/

/a. = 0\

W = o/

6ap> — 4:a'

.; p (6ap2

when
/. = 0X

\w = 0/

4a) = 8ajB

;

dy

dxP = '^ = ^> + V2, or - ^2.

Hence the origin is a triple point, the branches being in-

clined to the axis of x at the angles 0, tan~i(v'2), and

tan~i (— V^), respectively, as in the figure. (See Courte-

nay's Calcnlus, p. 191 ; or Young's Calculus, p. 151.)

3. Examine «/' — a;' (1 — a;^) = for multiple points.

Ans. There is a double point at the origin, the branches

being inclined to the axis of a? at angles of 45° and 135"

respectively.

4. Show that ay^— oi?y—as? = has no multiple points.

111. Cusps.—A cusp is a point of a curve at which two

branches meet a common tangent, and

stop at that point. If the two branches

lie on opposite sides of the common tan-

gent, the cusp is said to be of the first

species ; if on the same side, the cusp is

said to be of the second species.

Since a cusp is really a multiple point

of the second kind, the only difference

being"that the branches stop at the point,

instead of running through it, we exam-

ine for cusps as we do for multiple points; and to distin-

Fig.27.
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guish a eusp from an ordinary multiple point, we trace the

curve in the vicinity of the point and see if y is real on one

side and imaginary on the other. To ascertain the kind of

cusp, we compare the ordinates of the curve, near the point,

with the corresponding ordinate of the tangent ; or ascertain

the direction of curvature by means of the second derivative.

In the particular case in which the common tangent to

the two branches is perpendicular to the axis of x, it is best

to consider y as the independent variable, and find the

values of 3- , etc.
dy'

EXAMPLES.

1. Examine ^ = a? ± a;^ for cusps.

We see that when x = 0, y has but one value, 0; when
a; < 0, ^ is imaginary ; and when xyO,y has two real

values; hence, (0, 0) is the point to be examined.

^ = 2a; ± ^a;^ = 0, when a; = ; hence the axis of x is

a common tangent to both branches, and

there is a cusp at the origin.

j^ = 3±J^a!^ is positive when a; = 0;

hence the cusp is of the second kind.

The value of -j^ shows that the upper

branch is always concave upward, while the lower branch

has a point of inflexion, when x = -^ ; from the origin to

the point of inflexion this branch is concave upward, after

which it is concave downward.

The value of -f- shows that the branch is horizontal
dx

when X = -Jf. Prom y z=.x^ — x^, we find that the lower

branch cuts the axis of a; at a; = 1. The shape of the curve

Is given in Fig. 28.
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2. Examine {y — if = {x — aY for cusps.

Ans. Tlie point («, h) is a cusp of the first kind.

3. Examine cy^ = a? for cusps.

The origin is a cusp of the first kind.

112. Conjugate Points.—A conjugate point is an iso-

lated point whose co-ordinates satisfy the equation of thu

curve, while the point itself is entirely detached from every

other point of the curve.

For example, in the equation «/ = (a + x)'\/x, if x is

negative, y is, in general, imaginary but for the particular

value a; = — a, y = 0. Hence, P is a

point in the curve, and it is entirely

detached from all others. When a; = 0,

y = 0, which shows that the curve p_

passes through the origin. For positive

values of x, there will he two real values

of y, numerically equal, with opposite

signs. Hence, the curve has two infinite branches on the

right, which are symmetrical with respect to the axis of x.

If the first derivative becomes imaginary for any real

values of x and y, the corresponding point will be conjugate,

as the curve will then have no direction. It does not fol-

low, however, that at a conjugate point -^ will be imagi-

nary; for, if the curve y =f{x) have a conjugate point at

(x, y), from the definition of a conjugate point, we shall

have
f{x±h) = an imaginary quantity. But

, dyh d^yh^ ,
d^y¥

, ,

therefore, if either one of the derivatives is imaginary, the

first member is imaginary; hence, at a conjugate point

some one or more of the derivatives is imaginary,

'Tice at a conjugate point some of the derivatives are

-inary, let the n*^ derivative be the jirst that is imagi-
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nary. Suppose the equation of the curve to be freed from

radicals, and denoted by u =f{x, y) = 0. Take the w'*

derived equation (Art. 88, Sch.) ; we have

dy dx" ' ' ' ' dx' ~ '

where the terms omitted contain derivatives of u with re-

spect to X and y, and derivatives of y with respect to x, of

lower orders than the n''K If, then, ^- be not 0, the value
dy

of j^ obtained from the deriyed equation will be real,

which is contrary to the hypothesis; hence, y- = is a

necessary condition for the existence of a conjugate point.

But
du du dy

dx dy dx '

therefore, since -p == 0, we must have -=- = 0. Hence, at

a conjugate point we must have -=- = 0, and -r- = 0.

Rem.—Owing to the labor of finding the higher derivatives, it is

usually better, if the first derivative does not become Imaginary, to

substitute successively a+ h and a — h for x, in the equation of the

curve, where a is the value of x to be tested, and Ji is very small. If

both values oiy prove imaginary, the point is a conjugate poiut.

EXAMPLES.

1. Examine ay^ — x^-\- iax^ — ba^x + 2aS = G for con-

jugate points.

^ = - 3a;3 + %ax — bd? = 0. (1)

g = 3«2/ = 0. (2)
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Solving (1) and (3), we get

(;="o) -^ czn
Only the first pair of values satisfies the equation of the

curve, and hence the point (a, 0) is to be examined.

dy _ _ 3x> — Sax + 5a^ _ 6x — 8a

dx~ My ~ 2ap

=
, when (

""
„ )

;

therefore, ^ = — 1 ; .-. p — ± V— 1 — -^•

This result being imaginary, the point {a, 0) is a conju-

gate point.

3. Show that a;* — ax^y — axy^ + ay = has a conju-

gate point at the origin.

3. Examine ((?y — 7?f = (a; — df {z — by for conjugate

points, in which ay b.

The point (5, -^j is a conjugate point.

The first and second derivatives are real in this example ; hence the

better method of solving it will be to proceed according to the Bemarb
above given

113. Shooting Points are points at which two or more

branches of a curve terminate, without having a common
tangent.

Stop Points are points in which a single branch of a

curve suddenly stops.

These two classes of singular points but rarely occur, and

never in curves whose equations are of an algebraic form.
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EXAMPLES.

X
1. Examine y = ^ for shooting points.

l + >

Here
dy

dx
1 +

1.+ J.\2

(l+e')

If a; is + and small, y is + ; if

a; is — and small, y is —. When
a; is + and approaches 0, y = 0,

and ^ = : when x is —
dx

proaohes 0, y = 0, and

and ap-

dy

dx
1.

Fig, 30.

Hence, at the origin there is a shooting point, one branch

having the axis of x as its tangent, and the other inclined

to the axis of x at an angle of 45°. (See Serret's Calcul

Diffgrentiel et Integral, p. 267.)

2. Examine y = a; log x.

"When a; is +, y has one real value ; when x = 0, y = ;

when a; < 0, y is imaginary ; hence there is a stop point at

the origin.

3. Examine « = a; tan~i -•
^ X c.

If

dy _
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114. Tracing Curves.—We shall conclude this chap-

ter by a brief statement of the mode of tracing curves by

means of their equations.

The usual method of tracing curves consists in assigning

a series of different values to one of the variables, and cal-

culating the corresponding series of values of the other, thus

determining a definite number of points on the curve. By
drawing a curve or curves through these points, we are

enabled to form a tolerably accurate idea of the shape of the

curve. (See Anal. Geometry, Art. 21.)

In the present Article we shall indicate briefly the man-

ner of finding the general form of the curve, especially at

such points as present &nj 2)eculiarity, so that the mind can

conceive the locus, or that it may be sketched without

going through the details of substituting a series of values,

as was referred to above.

To trace a curve from its equation, the following steps

will be found useful

:

(i.) If it be possible, solve it with respect to one of its

variables, y for example, and observe whether the curve is

symmetrical with respect to either axis.

{2.) Find the points in which the curve cuts the axes,

also the limits and infinite branches.

(3. ) Find the positions of the asymptotes, if any, and at

which, side of an asymptote tlie corresponding branches lie.

(^.) Find the value of the first derivative, and thence

deduce the maximum and minimum points of the curve, the

angles at which the curve cuts the axes, and the multiple

points, if any.

{5.) Find the value of the second derivative, and thence

the direction of the curvature of the different branches, and

the points of inflexion, if any.

(6.) Determine the existence and nature of the singular

points by the usual rules.
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EXAMPLES.

1. Trace the curve y

When a; = 0, ^ = ; .•. the curye passes through the

origin.

For all positive values of x, y is positive ; and when
a; = CO

, y = 0. For negative values of x, y is negative, and

when a; = — 00 , y =Q ; hence the curve has two infinite

branches, one in the first angle and one in the third, and the

axis of X is an asymptote to both branches.

dy _ 1—x^ ^ _ 2x {3? — 3)

dx~ {i + x^f ' dc^~ {1+ c^'

When a; = ± 1, -^ = ; .-. there is a maximum ordinate

at a; =: + Ij and a minimum ordinate at a; = — 1, at

which points y ^\ and — \ respectively.

When a; = 0, -^ = 1 ; .-. the curve cuts the axis of x at

an angle of 45°.

Putting the second deriva-

tire equal to 0, we get a; =
or ± Vs. Therefore, there

are points of inflexion at (0, 0) —
and at a; = + \/3 and — -v/S,

for which we have y — iVS,
— jVS. From a; = — VS
to a; = 4- v/3, the curve is concave towards the axis of x,

and beyond them it is convex.

From this investigation the curve is readily constructed,

and has the form given in the figure.

2. Trace the curve %f = 2ax^ — a?.

y = x^ (2a — a;)'
;

Fig. 31.
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dx

iax — 3x^

~3f~'
-8a2

9a;t (2a - x)i

When a; = or 2a, y = ; .•. the curve cuts the axis of

X at the origin and at a; = 2a.

To find the equation of the asymptote, we have

y
/. 3aU /. 2a \

therefore, y=—x + ^a is the equation of the asymptote,

and as the next term of the expression is positive, the curve

lies above the asymptote.

Evaluating the first derivative for a; = 0, y = 0, we have

dy 4aa; — 3a;^ 4a — '6a;
_

dx Zf
<oy

Idy^ _ 4a

\dx/ ~~ 6w

dy

dx

6y

dy

dx
_ /3a

when a; = ^ = ;

± 00 , when ^ = 0.

Hence, at the origin there are

two branches of the curve tangent

to the axis of y ; and the value of

-^ shows that if y be negative as it

approaches 0, -^ will be imaginary;

and hence the origin is a cusp of

the first species.

When a; = 4a, -^ = ; .•. there is a maximum ordinate
* dx

at x = fa.

-M — — — 00 : ,•. the curve cutsWhen X = 2a, dx~
the axis of x, at the point x = 2a, at right angles.
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Tutting the second derivative equal to oo, we get x = 2a.

When X < 2a, the second derivative is — , and when > 2a

it is + ; hence the left branch is everywhere concave down-

ward, and the right branch is concave downward from a; =
to a; = 2a. At this last point it cuts the axis of x at right

angles, and changes its curvature to concave upward; the

two branches touch the asymptote at a; ^ + oo and — oo,

respectively, i. e., they have a common asymptote.

In the figure, OA = 2a, OB = ^a, 00 = fa.

t^, J. ± a,\j\D ui
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at and 0. Between and B, the curve is above the axis

;

at B the ordinate is infinite ; from B to C, the curve is

below ; from to infinity, it is above OX. Also, if x is

negative, y is negative ; therefore the branch on the left of

is entirely below the axis.

.

,

dy a? — 2ax + 2d^
Also, -f- = ':-

dx {x — a)2

Let x = a; .: -^ = as; and the infinite ordinate at the

distance a to the right of the origin is an asymptote.

li a; = 0, -^ = 3; if x =: 2a, -—- = 2 ; i.e., the curve

cuts the axis of x at the origin and the distance 2a to the

right, at the same angle, tan'^ (2).

It x^ — 2ax + 2a^ or {x— a)' + a*= 0, a; is impossible

;

hence there is no maximum or minimum ordinate.

^ . cPy 2(x — af—2Ux — a)^ + a^
Agam, -^. = —i '-—-—!-^-^-—i—!

—

^
" dx^ (x — a)*

— 3a2

dx^

~{x — af'

is + if a; < a, and is — it x > a.

But a; < a, y is + ; and a; > a < 2a, ?/ is — ; and

a; > 3a, y is + ; therefore, from to B, and B to C, the

curve is convex, and from C to infinity, it is concave to the

axis of X.

d^v 2(1?

^* ^ ^® ~' ^ =
(STfflp

^^ +' ^"* 2/
Js -

;
therefore

the branch from the origin to the left is concave to the axis

of X. (See Hall's Calculus, pp. 182, 183.)

4. Trace the curve y^ = a^a;'.

The curve passes through the origin ; is symmetrical

with respect to the axis of x ; has a cusp of the first kind at
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the origin ; both branches are tangent to the axis of x ; are

conTex towards it ; are infinite in the direction of positive

abscissas, and the curve has no asymptote or point of in-

flexion.

115. On Tracing Polar Curves.—Write the equation,

if possible, in the form r =f{0) ;
give to 6 such values as

to make r easily found, as for example, 0, ^n, n, frr, etc.

Putting "52 = 0, we find the values of 6 for which r is a

maximum or minimum, i. e., where the radius vector is

perpendicular to the curve.

Find the asymptotes and direction of curvature, and

points of inflexion. After this there will generally be but

little difficulty in finding the form of the curve.

EXAMPLES.

1. Trace the lituus r = -r-

When e = 0,r=z<x>; when (9 = 1 (= 57°.3),* r= ±a;
when = 2 (= 114°.6), r = ± .7a ; when — 3, r =
± .58a, etc. ; when 6 = co, r = 0.

-jE = — K-ij and when ^- = 0, r = 0; hence, r and 6
at) aa' aa

are decreasing functions of each other throughout all their

values
; f and the curve starts from infinity, when fl = 0,

and makes an infinite number of revolutions around the

pole, cutting every radius-vector at an oblique angle, and

reaching the pole only when 6 = <x>.

The subtangent r^-^=. = 0, when r = oo; hence

the initial line is an asymptote (Art. 105).

* The unit angle is that whose arc is equal to the radius, and is about 57° .29578.

t If we consider alone the branch generated by the positive radius-vector.
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6?r (4^4 + ^)1

a point of inflexion at ?• = aV^ ; from r = to r = aV^
the curve is concave toward the pole, and from r = a\/% to

»• = 00 it is convex.

2. Trace the curve / = a sin 30.

r=0, when 6=0, 60°, 120°, 180°, 240°, and 300°.

When = 27r, or upwards, the same series of values recur.

If = 30°, 90°, 150°, 210°, 270°, and 330°, r = a,—a,
a, — a, a, and — a, successively.

-^ — 3a cos 36, showing that r begins at when = 0,

increases till it is a when d = 30°, diminishes to as

passes from 30° to 60°, continues to diminish and becomes

— a when 6 becomes 90°, and so on.

dp ISaJ'r — 8r*
i,

• u i, . i, .

-^ = ; , which shows that
<^r (2a> - 8r2)*

the curve is always concave towards the

pole. There is no asymptote, as r is

never oo

.

Hence the curve consists of three , _. „
r ig. 33.

equal loops arranged symmetrically

around the pole, each loop being traced twice in each revo-

lution of r. A little consideration will show that the form

of the curve is that given in the figure. (See Gregory's

Examples, p. 185 ; also Price's Calculus, Vol. I, p. 427.

)

3. Trace the Chordel r = a cosec
\2n)'

If = 0, nn, 2nn, 3nn, 4«7r, bmr, etc., successively,

r := 00 , a, 00 , — a, — qo , a, etc.

dr a 6 B a ,0/ 0\—
- = — Tr- cosec s- cot s- = H- cosec^ jr- ( — cos ^-1 j

dd 2n 2n 2n 2m 2n\ 2w/

which is negative from = to = mr, positive from
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=nn to =z SriTT, negative from 6 = Swtt to 6 = Smr, etc.

Hence we see that r begins at oo when 6 = 0; diminishes

till it become* a when d = mr; increases as d passes from

MTT to 2mr ; becomes oo when = 2nn; when 6 passes 2nn,

r changes from + oo to — oo; when increases from 2mT

to SwTT, r increases from — oo to — a; when increases

from Stm to inn, r diminishes from — a to — oo ; when
6 passes inn, r changes from — oo to + oo . When in-

creases beyond in, the same values of r recur, showing that

the curve is complete.

dr

Fig. 34

e
jfl = 5- cosec „do 2n 2n (-'"'D gives = nn, 3nn,

bnn, etc. ; i. e., the radius-vector is a minimum at = nn,

Znn, 5nn, etc.

d6
The subtangent = t^-j- = 2na

W
COSs-

2n

= — 2na when = 0;
and = + 2na when = 2nn

;
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therefore the curve has two asymptotes parallel to the initial

line, at the distances ± %na from the pole.

r^ 2anr
P =

dp _ 2a?n (in^ — 1)

.: the curve is always concave towards the pole.

Thus it appears that while 6 is increasing from to 2nrr,

the positive end of the radius-vector traces the branch

drawn in Fig. 34 ; and wh"!le increases from 2mT to 4w:r,

the negative end of the radius-vector traces a second branch

(not drawn), the two branches being symmetrical with

respect to the vertical line through the pole 0.

EXAMPLES.

1. Find the direction of curvature of the "Witch of Agnesi

x^y = ia^ (2a — y).

The curve is concave downward for all values of y between

2a and |a, and convex for all values of y hetween |-a and 0.

2. Find the direction of curvature of y = h + {x — a)*.

Convex towards the axis of x from a; > a to a; = oo ; and

from x=:a — bi to x= — co ; concave towards the axis

of X from a; < a to x=:a — b^.

3. Examine y ^ {a — x)^ -f- ax for points of inflexion.

There is a point of inflexion at x = a.

4. Examine y = x + 36x^ — 2x^ — 0^ for points of in-

flexion. Points of inflexion at x = 2, x= —3.
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5. Find the co-ordinates of the point of inflexion of the

curve
a? (a^ — a^)

y =—^5

—

6. Examine r = -^ z. lor points of inflexion.

Here -^rs =
dr^ _ 4r {r — a)^

_

etc.

There are points of inflexion at r = fa and r = |«.

7. Examine y^ = {x — lyx for multiple points.

There is a multiple point at x = 1.

x^ ( ct^ x^)
8. Examine «/^ = —\ ^- for multiple points.

There is a multiple point at the origin, and the curve is

composed of two loops, one on the right and the other on

the left of the origin, the tangents bisecting the angles be-

tween the axes of co-ordinates.

9. Show that x^ + x^y^ — Gaa^y + a^y^ = has a multiple

point of the second kind at the origin.

10. Show that y = a + x + bx'^ :tcx^ has a cusp of the

second kind at the point (0, a), and that the equation of the

tangent at the cusp is «/ = a; + a.

11. Show that y^ = ax^ + a? has a cusp of the first kind

at the origin.

12. Show that ay^ — a? + h? = has a conjugate point

45
at the origin, and a point of inflexion at »; = —-•
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13. Trace the curve ^' = a' — x^.

The curve cuts the axes at {a, 0) and (0, a).

It has an asymptote which passes through the origin.

The points where the curve cuts the axes are points of

inflexion.

14. Trace the curve y = ax^ ± 's/bx sin x.

For every positive value of x there are

two values of y, and therefore two

points, except when sin x = 0, in which

case the two points reduce to one.

These points form a series of loops Uke pig. 35,

the links of a chain, and have for a

diametral curve the parabola y = ax^, from which, when x

is positive, the loops recede and approach, meeting the

parabola whenever a; = or tt, or any multiple of -n. But

when X is negative, y is imaginary except when sin « = 0,

in which case y = aa?, so that on the negative side there is

an infinite number of conjugate points, each one on the

parabola opposite a double point of the curve. (See De
Morgan's Cal., p. 383 ; also, Price's Cal., Vol. I, p. 396.)



CHAPTER XI.

RADIUS OF CURVATURE, EVOLUTES AND INVO-

LUTES, ENVELOPES.

116. Curvature.— OTe curvature of a curve is its rate

of deviationfrom a tangent, and is measured by the external

angle between the tangents at the extremities of an indefi-

nitely small arc ; that is, by the angle between any infini-

tesimal element and the prolongation of the preceding

element. This angle is called the angle of contingence of

the arc. Of two curves, that which departs most rapidly

from its tangent has the greatest curvature. In the same

or in equal circles, the curvature is the same at every

point ; but in unequal circles, the greater the radius the

less the curvature ; that is, in different circles the curvature

varies inversely as their radii.

Whatever be the curvature at

any point of a plane curve, it is

clear that a circle may be found

which has the same curvature as

the curve at the given point, and

this circle can be placed tangent

to the curve at that point, with

its radius coinciding in direction

with the normal to the curve at

the same point. This circle is called the osculating circle,

or the circle of curvature of that point of the curve. The

radius of curvature is the radius of the osculating circle.

The centre of curvature is the centre of the osculating circle.

For example, let ABA'B' be an ellipse. If different

circles be passed through B with their centres on BB', it is

Fig. 36.
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clear that they will coincide with the ellipse in very differ-

ent degrees, some falling within and others without. Now,
that one which coincides with the ellipse the most nearly

of all of them, as in this case MN, is the osculating circle

of the ellipse at B, and is entirely exterior to the ellipse.

The osculating circle at A or A', is entirely within the

ellipse ; while at any other point, as P, it cuts the ellipse,

as will be shown hereafter.

117. Order of Contact of

Curves.—.Let y=f{x) and y
= <p (x) be the equations of the

two curves, AB and ah, referred to

the axes OX and OY. Giving to

X an infinitesimal increment h, and

expanding by Taylor's theorem, we

have,

y. =f{x + h)= f{x) +f {x) h + f" {x)

Fig. 37.

+ /"'(^)^-3 + etc. (1)

¥'

y, = ,li{z + h) =(P{x) + <t>'{x) h + cj)" (x) -

7? 3

Now if, when x = a = OM, we have f{a) =0 (a), the

two curves intersect at P, i. e., have one point in common.

If in addition we have /' (a) = 0' (a), the curves have a

common tangent at P, i. e., have two consecutive points in

common ; in this case "they are said to have a contact of the

first order. If also we have, not only/ (a) = (a) and/' {a)

= 0' {a), but/" {a) =. 0" (a) ; i. e., in passing along one of

the curves to the next consecutive point, — {i. e., the curva-

ture), remains the same in both curves, and the new point

10
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is also a point of the second curve ; i. e., the curves have

three consecutive points in common ; in this case the curves

are said to have a contact of the second order. If f{a)

= ^ (a),f («) = <!> {a), /" {a) = f (a), /'" (a) = <!>'" {«),

the contact is of the third order, and so on. It is plain

that the higher the order of contact, the more nearly do

the curves agree ; if every term in (1) is equal to the cor-

responding term in (3), then y^ = y^, and the two curves

become coincident.

118. The Order of Contact depends on the num-
ber of Arbitrary Constants.—In order that a curve may
have contact of the n^^^ order with a given curve, it follows

from Art. 117 that n + 1 equations must be satisfied.

Hence, if the equation to a species of curve contains n + 1

constants, we may by giving suitable values to those con-

stants, find the particular curve of the species that has

contact of the w^ order with a given curve at a given point.

For example, the general equation of the right line has two

constants, and hence two conditions can be formed, / {x)

= (j) {x) and/' (a;) =
<t>'

{x), from which the values of the

constants may be determined so as to find the particular

right line which has contact of the^rs^ order with a given

curve at a given point. I?i general, the right line cannot

have contact of a higher order than the first.

Contact of the second order requires three conditions,

f{x) = <p {x), f ix) = 0' {x), and /" {x) = ct>" (x), and

hence in order that a curve may have contact of the second

order with a given curve, its equation must contain three

constants, and so on. The general equation of the circle

has three constants; hence, at any point of- a curve a circle

may be found which has contact of the second order with

the curve at that point ; this circle is called the osculating

circle or circle of curvature of that point ; in general,

the circle cannot have contact of a higher order than

the second. The parabola can have contact of the
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third order, and the ellipse and hyperbola of the

fourth.

In this discussion we have assumed that the given curve is of such
nature as to allow of any order of contact. Of course the order of

contact is limited as much by one of the curves as by the other. For

example, if the given curve were a right line and the other a circle,

the contact could not in general be above the first order, although the

circle may have a contact of the second order with curves whose

equations have at least three constants. Also, we have used the

phrase in general, since exceptions occur at particular points, some of

which will be noticed hereafter.

119. To find the radius of curvature of a given

curve at a given point, and the co-ordinates of the

centre of curvature.

Let the equation of the given curve be

y^fix), (1)

and that of the required circle be

{x' — mf + (y' — nf = r^

;

(2)

it is required to determine the values of m, n, and r.

Since (3) has three arbitrary constants, we may impose

three conditions, and determine the values of these con-

stants that fulfil them, and the contact will be of the

second order (Art. 118).

From (3), by differentiating twice, we have,

x'-m+(y'-n)^, = Q', (3)

If (3) is the circle of curvature at the point {x, y) of (1),

we must have,

x' = x, y' = y;

dy' _ dy cPy' _ i^y

dx'
~ dx' dx'^

~ dy?
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Substituting these values in (2), (3), and (4), we have,

{x — mf + {y — nY - r^

;

(5)

cc-m + {y-n)'^ = (6)

Therefore, y — n— ^— (8)

dx^

L ,df\dy
\ '^dxVdx ,„,

^-'^ = ^ ^^^

By (5), (8), and (9), we have

From (9) and (8) we have

dx^

L ,df\dy
V^dxVdx ,,,,

"' = * ^ ^^^)

dx^

l + ^-l

dx^

120. Second Method.—Let ds denote an infinitely

small element of a curve at a point, and the angle which

the tangent at this point makes with the axis of x. Imagine

two normals to be drawn at the extremities of this elemen-

tary arc, i. e., at two consecutive points of the curve ; these
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normals will generally meet at a finite distance. Let r be

the distance from the curve to the point of intersection of

these consecutive normals. Then the angle included be-

tween these consecutive normals is equal to the correspond-

ing angle of contingence (Art. 116), i, e., equal to dcjt^ Since

d^ is the arc between the two normals at the unit's distance

of the point of intersection, we have

ds = rd^, or r = ~ (1)

Now this value of r evidently represents the radius of the

circle, which has the same curvature as that of the given

curve at the given point, and hence is the radius of curva-

ture for the given point, while the centre of curvature may
be defined as the point of intersection of two consecutive

normals.

To find the value of r, we have (Art. 56a),

tan = -^ ;
.•. = tan~i ~-

;dx ^ dx'

dec ^__^^_^^_^_

and hence d<b = r-s ; also, ds = Vda? + duK

"^
dx^

Substituting in (1), we have

df\l

da^

which is the same as (10) of Art. 119.

1 + -^j) has always two values, the

one positive and the other negative, while the curve can

generally have only one definite circle of curvature at any

point, it will be necessary to agree upon which sign is to be
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taken. We shall adopt the positive sign, and regard r as

positive when the second derivative is positive, i. e., when
the curve is convex downwards. (Usage is not uniform on

this point. See Price's Calculus, Vol. I, p. 435. Todhun-

ter's Calculus, p. 339, etc.)

121. To Find the Radius of Curvature in Terms
of Polar Co-ordinates.

We may obtain this by transforming (2) of Art. 120 to

polar co-ordinates, from which we find

(--g)*

''+^d^-'w "+nJ-^^
where N is the normal. See Art. 102, Eq. 9. [See (2) of

Ex. 4, Art. 90.]

122. At a Point where the Radius of Curvature

is a Mazimum or a Minimum, the Circle of Curva-

ture has Contact of the Third Order with the Curve.

Since r is to be a maximum or a minimum, we must

have -rr- = 0.
dx

Differentiating (2) of Art. 120 with respect to oc, we have

dr _ 2\ "^ dx>l dx\dzV da?\ "^
da;>/ _

dx- '-^-a -0;

^dllM
cPy _ dx\dxV . .

d^ ~ ~~7TW^ dx^
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Differentiating (8) of Art. 119, we haye

d^y _ dxXdxy , ,

dx^ ~ -. dy^

Hence the third derivative at a point of maximum or

minimum curvature is the same as it is in the circle of

curvature, and therefore the contact at this point is of the

third order (Art. 117).

Cor.—The contact of the osculating circles at the

vertices of the conic sections is closer than at other

points.

123. Contact of Different Orders.—Let y = f{x)

and y ^<f>{x) represent two curves, and let x^ be the ab-

scissa of a point of their intersection ; then we have

f{x,) = <p {x^)-

Substituting a;, ± A for a;, in both equations, and sup-

posing yi and y^ the corresponding ordinates of the two

curves, we have

y, =/(^. ±n) =f{x,) +f'{x,) {±h) +f"ix,)i^^

+ /"'(«^.)%.-3- + etc. (1)

y,=<t>ix,±h) = <p {X,) + <p' (x,) {±k) + ct>" (x,) i^^'

+ 0"'(^,)%|-^' + etc. (2)

Subtracting (3) from (1), we get, for the difference of

their ordinates, corresponding to X: ± h,

y,-y,^ [f'{xO-<t>'(X:)] {±h) + [/"(^.) - 0"(^.)] ^^-

+ [/'"(a^O - r{x:)] ^l^' + etc. (3)



Now if these curves have contact of the first order, the

first term of (3) reduces to zero (Art. 117). If they have

contact of the second order, the first two terms reduce to

zero. If they have contact of the thu-d order, the first three

terms reduce to zero, and so on. Hence, when the order of

contact is odd, the first term of (3) that does not reduce to

zero must contain an even power of ± h, and y^ — y^ does

not change sign with h, and therefore the curves do not

intersect, the one lying entirely above the other ; but when
the order of contact is even, the first term of (3) that does

not reduce to zero must contain an odd power of ± ^j and

Vi — Vi changes sign with Ji, and therefore the curves inter-

sect, the one lying alternately above and below the other,

CoK. 1.—At a point of inflexion of a curve, the second

derivative equals ; also, the second derivative of any point

of a right line equals 0. Hence, at a point of inflexion^

a rectilinear tangent to a curve Kas contact of the

second order, and therefore intersects the curve.

Cob. 2.—Since the circle of curvature has a contact of

the second order with a curve, it follows that the circle oj

curvature, in general, cuts the curve as well as
touches it.

CoE. 3.—At the points of maximum and minimum curva-

ture, as for example at any of the four vertices of an ellipse,

the osculating circle does not cut the curve at its point of

contact.

EXAMPLES.

1. Find the radius of curvature of an ellipse,

a;2

a

2

+

Here ^ - - ^- • \
^^V^ - «V + ^'^

^^^^ dx- c?y'
•• ^ + 5^8-"~^2



llXAMFL10/i \ ^^3

^ - _ dx _ _ 53(fly + aV) _ _ J\

.-. (Alt 120), T= ^ ^' „/^..

(ay + ¥x^)i
, , ,. ,, , ,=

^4^,4
— (neglecting the sign).

At the extremity of the major axis,

' ^ a

At the extremity of the minor axis,

a*
x = 0, y = b, .: »' = j--

2. Find the radius of curvature of the common parabola.

y^ = 2px.

Here ^=^ ^=-t.
dx y' dy? y^'

{y^ ^p')^ (normal)*'

^8 pi

At the vertex, y z^ 0; .•. r ^ p.

3. Find the radius of curvature of the cycloid

X =. r vers~i - — ^/^ry — y^.

Here
^"^ = ^ - • • l + ^' = ?!!•

<^«/ V^r?/ — /' dx"^ y
'

which equals twice the normal (Art. 101, Ex. 5).
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4. Find the radius of curvature of the parabola whose

latus-fectum is 9, at x=. 3, and the co-ordinates of the

centre of curvature. r = 16.04; in — 13^, n= — 6.91.

5. Find the radius of curvature of the ellipse whose axes

are 8 and 4, at a; = 2, and the co-ordinates of the centre of

curvature. r = 5.86 ; m = .38, n=— 3.9.

6. Find the radius of curvature of the logarithmic spiral

r = a".

dr

de
«* log a

;

(See Ex. 2, Art. 102.)

7. Find the radius of curvature of the spiral of Archi-

medes, r = ad. E = (gg + r^)t

2a2 + r^

8. Find the radius of curvature of the hyperbolic spiral,

124. Evolutes and Involutes.—The curve which is

the locus of the centres of all the osculating circles of a

given curve, is called the evoluie of that curve ; the latter

curve is called the involute of the former.

Let P], Pj, Pa, etc., represent a series of

consecutive points on the curve MN, and

C„ Cs, C3, etc., the corresponding centres

of curvature ; then the curve C,, Cj, C3,

etc., is the evolute'ot MN", and MN is the

involute of Ci, C2, C3, etc. Also, since the

lines OiPi, C^Pj, etc., are normals to the

involute at the consecutive points, the

points Ci, O2, C3, etc., may be regarded as Fig^ 38.
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consecutive points of the evolute ; and since each of the

normals PjC,, P2C2, etc., passes through two consecutiTe

points on the evolute, they are tangents to it.

Let r„ r<i, Vi, etc., denote the lengths of the radii of

curvature at P„ Pj, P3, etc., and we have,

r,-n = YSi, - P,0, = PjCs - P,C, = C,Oj

;

also u-r, = P5C3 - P2C2 = P3C3 - PsOj = 0^03

;

and r^ — r-j = C3C4, and so on to r,

;

hence by addition we have,

r„ — r, = CCj + C2O3 + . . . . C,_,C„.

This result holds when the number n is increased indefi-

nitely, and we infer that the length of any arc of the

evolute is equal, in general, to the difference between

the radii of curvature at its extremities.

It is evident that the involute may be generated from its

evolute by winding a string round the evolute, holding it

tight, and then unwinding it, each point in the string

will describe a different involute. It is fi'om this property

that the names evolute and involute are given. While a

curve can only have one evolute, it can have an infinite

number of involutes.

The involutes described by two different points in th«

moving string, are said to he parallel; each curve being got

from the other by cutting off a constant length on ity

normal, measured from the involute. (Williamsop's Dit
ferential Calculus, p. 295.)

125. To find the Equation of the Evolute of «
Given Curve.—The co-ordinates of the centre of curva-

ture are the co-ordinates of the evolute (Art. 124). Hence,

if we combine (11) and (12) of Art. 119 with the equation

of the curve, and eliminate x and y, there will result an

equation expressing a relation between nn and n, the cp-or-
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dinates of the required evolute, which is therefore the

required equation ; the method can be best illustrated by

examples.

The eliminations are often quite difficult; the following

are comparatively simple examples.

EXAMPLES.

1. Find the equation of the eyolute of the parabola,

f = 2px. (1)

Here ^y _p .
^y _ !^

dx y ' dx^ y^

Substituting in (11) and (13) of Art.

119, we have,

y'^ + p^ P ym =^ X + r

X =
y jy

m — p3"~'

3x + p;

n = y —
y2 J^p% y% _ yi

iia'yi pi pi

.: y =: — p^n^'.

And these values of x and y in (1) give,

pmi = ^p{m —p);

••• w* z=~{m— pf

;

(2)

which is the equation required, and is called the semi-cubical

parabola. Tracing the curve, we find its form as given in

Fig. 39, where AO = p.

If we transfer the origin from to A, (3) becomes

27p
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2. Find the length of the evolute AQ', Fig. 39, in terms

of the co-ordinates of its extremities.

Let ON = a;, NQ = «/ ; ON' = m, N'Q' = w.

Then by Art. 123, Ex. 2, we have,

J.
_ (y^ + f)^

pi

Therefore, by Art. 124, we have.

Length of AQ' = Q'Q - AO = ^^^ + ^^)^ -p

= {n^ + pi)^ — p. (Since y^ = p^n^, by Ex. 1.)

3. Find the equation of the evolute of the cycloid.

X =i r vers~^ - — a/2»'z/ — ^. (1)

Here
dy 's/^ry — y^ d?y

dx y

.•. wi = a; + 2 ^/2ry^^^^^ and w = — y;

or a; = wj — 2 V— 2rre — n^ and y = — n;

which, in the equation of the cycloid, gives

)n=rvers~M ;) +V—2ni— ?i',(2)

which is the equation of a cycloid

equal to the given cycloid ; the

origin being at the highest point, o

This will appear by transforming

X = *r YeTsin.-'^- + V'^ry—y^ (3)

y
* Versin"* - is not restricted to first quadrant
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(which gives points between 0' and X), to parallel axes

through 0'.

Denoting by in and n the new co-ordinates, the formulae

for transforming from to 0' are

X = m- + in, y = 2r + n

;

which in (3) gives

nr + m = r vers-M3 + -
j + V2r(2r + n)— {2r+nf

2 + r vers~i (
j + V— 2rn — n^

;

(--) + ^/—2rn—~n^; (4)

= r vers'

m = r vers~i

which is the same as equation (3). Hence we see that the

equation of the evolute, OA (2), is the same as that of the

cycloid, O'X (4). That is, ihe evolute of a cycloid is an

equal cycloid.*

126. A Normal to an Involute is Tangent to the

Evolute.—This was shown geometrically in Art. 124. It

may also be shown as follows

:

Let {x, y) be any point P of the involute (Fig. 40), from

which the normal PQ is drawn, and let {m, n) be the point

Q on the evolute through which the normal passes.

The equation of PQ is

y-n= --^{x-m); (1)

or X — m + -£(y — n) = 0. (2)

Now when we pass from a point P to a consecutive

point on the involute, Q also will change to a consecutive

Ttiis property was first discovered by Huygens,
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point of the evolute,' therefore we differentiate (2) with

respect to x, regarding x, y, m, n, as variables, and get

1 — dm d^y dy'^ dy dn _ . .

But, since (m, n) is the centre of curvature corresponding

to P, we have, by (8) of Art. 119,

which in (3) gives

dm dti dn „ dx dn£
. ^0 or — =

dx dxdx ' dy dm'

and this in (1) gives

therefore (1) or (4), which is the equation of a normal to

the involute at P (x, y), is also the equation of a tangent to

the evolute at Q (w, n).

127. Envelopes of Curves.—Let us suppose that in

the equation of any plane curve of the form

f{x,y,a) = 0, (1)

we assign to the arbitrary constant a, a series of different

values, then for each value of a we get a distinct curve,

different from any of the others in form and position, and

(1) may be regarded as representing an indeiBnite number

of curves, each of which is determined when the correspond-

ing value of a is known, and varies as a varies.

The quantity a is called a variable parameter, the name
being applied to a quantity which is constant for any one

curve of a series, but varies in changing from one curve to

another, and the equation / {x, y, a) = 0, is said to repre-

sent afamily of curves.

If we suppose a to change continuously, i. e., by
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infinitesimal increments, the curves of the series represented

bj (1) will differ in position by infinitesimal amounts ; and

any two adjacent curves of the series will, in general, inter-

sect; the intei-sections of these curves are points in the

envelope. Hence an envelope may be defined as the locus

of the intersection of consecutive curves of a sefies.

It can be easily seen that the envelope isjangent to each

of the intersect! ng,ci^rves of the series; for, if we consider

four consecutive curves, and suppose Pi to be the point of

intersection of the first and second, P^ that of the second

and third, and P3 that of the third and fourth, the line

P, Pj joins two infinitely near points on the envelope and
on the second of the four curves, and hence is a tangent

both to the envelope and the second curve ; in the same
way it may be shown that the line PjPj is a tangent to the

envelope and the tliird consecutive curve, and so on.

128. To Find the Equation of the Envelope of a
given Series of Curves.

Let f{x, y, a) = 0, (1)

f{x, y, a+ da) = 0, (3)

be the equations of two consecutive curves of the series;

then the co-ordinates of the points of intersection of (1) and
(3) will satisfy both (1) and (3), and therefore also will

satisfy the equation

f{x, y, a) — f(T, y, a + da) „ . . , „'^ "^' '—^j'
' ^'^—'- = (Anal. Geom., Art. 30),

or
df{x,y, a)

da = 0' (3)

and therefore the points of intersection of two infinitely

near curves of the series satisfy each of the equations (1)
and (3). Henc^, to find the equation of the envelope, we
eliminate a between (1) and (3), i. e., we eliminate the varia-

ble parameter between the equation of the locus and its first

differential equation.
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EXAMPLES.
m

1. Find the envelope oi y =zax -\ , when a varies,
a

Differentiating with respect to a, x, and y, being constant,

tve have
m

_o = x--,', .-. «=±y;
^ = ± [Vwa; + -y/ma;] or ^* = 4mz,

which is the equation of a parabola.

2. A right line of given length v

slides down between two rectangular

axes ; to find the envelope of the line

in all positions.

Let c be the length of the line, a

and b the intercepts OA and OB

;

then the equation of the line is

(1)
Fig. 41.

in which the variable parameters a and b are connected by
the equation

aa + ja = A (2)

Differentiating (1) and (2), regarding a and b as varia-

ble, we have

-kda ^,db = 0, or da = dkW ' a

ada + bdb = 0, or — ada = bdb.

Dividing (3) by (4), we have

(3)

(4)

X _y^

X

a _
y
b_ a'^ b

a8 + ja — c8'

A a = (x(?)^ and b — {y(?)^,



334 EXAMPLES.

which in (2) gives

(a;c3)t + {y(?)l = (?-,

.: x'i 4- «/ff = c^,

which is the equation required.

The form of the locus is given in

Fig. 43, and is called a hypo-cycloid,

which is a curve generated by a

point in the circumference of a

circle as it rolls on the concave

arc of a fixed circle.

Ffg. 42.

3. Find the envelope of a series of ellipses whose axes are

coincident in direction, their product being constant.

H- S+S = i-
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^ + "> = !' (^)

in which we have only the variable parameter a.

•'•

-a3 + i-
= <'5 .-. «^ = -; (6)

which in (5) gives

c + c^' •• '^y = i''-

4. Find the envelope of the right lines whose general

equation is

y z= mx + («%' + ¥)i, (1)

where m is the variable parameter.

b X
We find m =

« a/«* — a;"'

3^ V^
which in (1) gives —̂ + ^ = 1 for the required envelope.

Hence the envelope of (1) is an ellipse, as we might have

inferred, since (1) is a tangent to an ellipse. (See Anal.

Geom., Art. 74.)

EXAMPLES.

1. Find the radius of curvature of the logarithmic curve

X = log y.
__ (^2 + ya)4

~ my

3. Find the radius of curvature of the cubical parabola
ys = a>x. _ (9^4 4. a4)|

3. Find the radius of curvature of the curve

y = afl — x' + 1
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where it cuts the axis of y, and also at the point of mini-

mum ordinate.

At the first pointy r = — i; at the second, r = J.

4. Find the radius of curvature of the curve

y^ = 6a;' + afi.

~ — 8x^y

6. Find the radius of curvature of the rectangular hyper-

bola xy = m\ _ (a;a + f)^

6. Find the radius of curvature of the Lemniscate of

Bernouilli r^ = o? cos %Q. „ a^

^ = ¥r

7. Find the equation of the evolute of the ellipse

diyi ^ j2^2 — ^,852.

(flm)T + {in)^ = (a? — S^)!,

8. Find the equation of the evolute of the hyperbola

a^yi — ]yix^ = — cfib^.

(am)* - (5w)t = (a^ + 52)!.

9. Prove that, in Fig. 39, OM = 40A — 4p, and MP'
= 2^a/2.

10. Find the length of the evolute AP' in Fig. 39.

Ans. (3* — l)p.

11. Find the length of the evolute of the ellipse. (See

Art. 123, Ex. 1, and Art. 124.)
,

,a^ — b^
Ans. 4 5

ab

12. Find the length of the cycloidal arc OO'X, Fig. 40.

Ans. 8r.

13. Find the envelope of the series of parabolas whose

equation is y^ =zin(x — m), m being the variable parameter.

,

^
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14. Find i,he envelope of the series of parabolas expressed

1 + a^
by tlie equation y ^ ax — a;', where a is the variable

pai-ameter.

The result is a parabola whose equation is

0^ = 2^,(1 -2/).

This is the equation of the curve touched by the parabolas de-

scribed by projectiles discharged from a given point with a constant

velocity, but at different inclinations to the horizon. The problem

was the first of the kind proposed, and was solved by John Bernouilli,

but not by any general method.

15. Find the envelope of the hypothenuse of a right-

angled triangle of constant area c. c

""y -%
16. One angle of a triangle is fixed in position, find the

envelope of the opposite side when the area is constant = c.

c

17. Find the envelope of a; cos a + y sin a = p, in

which cc is the variable parameter. x^ + y^ z= p^.

18. Find the envelope of the consecutive normals to the

parabola y^ = 2px.
Q

Ans. y^ = ^fT- (x — pY, which is the same as was found

for the evolute in Ex. 1, Art. 135, as it clearly should be.

(See Art. 124.)

19. Find the envelope of the consecutive normals to the

ellipse ay + li^z^ = aW.

Ans. {aw)^ + (by)^ = {a^ — h^)^, which is the same as

was found in (7) for the evolute of the ellipse.



PART II.

INTEGRAL CALCULUS.

_ »• »<

CHAPTER I.

ELEMENTARY FORMS OF INTEGRATION.

129. Definitions.—The Integral Calculus is the inverse

of the Differential Calculus, its object being to find the

relations between finite values of variables from given

relations between the infinitesimal elements of those vari-

ables ; or, it may be defined as the process of finding the

function from which any given differential may have been

obtained. The function which being differentiated pro-

duces the given differential, is called the integral of the

differential. The process by which we obtain the integi-al

function from its differential is called integration.

The primary problem of the Integral Calculus is to effect

the summation of a certain infinite series of infinitesimals,

and hence the letter S was placed before the differential to

show that its sum was to be taken. This was elongated

into the symbol / (a long 8), which is the sign of integra-

tion, and when placed before a differential, denotes that its

integral is to be taken. Thus, C^xHx, which is read, « the

integral of ^7?S,x," denotes that the integral of ZxMx is to

be taken. The signs of integration and differentiation are
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inverse operations, and when placed before a quantity,

neutralize each other. Thus,

/ d {ax) = ax,

and d I axdx = axdx.

130. Elementary Rules for Integration.—In the ele-

mentary forms of integration, the rules and methods are

obtained by reversing the corresponding rules lor differ-

entiation. When a differential is given for integration, if

we cannot see hy inspection what function, being differ-

entiated, produces it, or if it cannot be integrated hy known
rules, we proceed to transform the differential into an

equivalent expression of known form, whose integral we
can see iy inspection, or can obtain by known rules. In

every case, a sufficient reason that one function is the

integral of another is that tJie former, being differentiated,

gives the latter.*

(i.) Since

d{v + y — z) = dv + dy — dz; (Art. 14.)

/ (dv + dy — dz) ^ d{v + y~z)^v + y — z

= / dv + dy — I dz.

Hence, the integral of the algebraic sum of any
number of differentials is equal to the algebraic sum
of their integrals.

(£) Since

d {ax ± 5) = adx
;

(Art. 15.)

* While there is no quantity whose differential cannot he found, there ie a large

claps of differentials whose integrals cannot be obtained ; either because there is no
quantity which, being differentiated, will give them, or because fhe inetbQ4 fpj
Qjexr integrfttioj} has pot yet heeii fotind,
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/ adx = d {ax + h) ^ ax ±b

= a I dx ±, b.

Hence, a constant factor can be moved from one

side of the integral sign to the other without affect-

ing the value of the integral. Also, since constant

terms, connected by the sign ±, disappear in differentia-

tion, therefore in returning from the differential to the

integral, an arbitrary constant, as 0, must he added, whose

value must be determined afterwards by the data of the

problem, as will be explained hereafter.

(3.) Since

d - [/(a:)]" = a [/(a;)]"-i df{x) ; ' (Arts. 15 and 19.)
11/

.: fa U{^)Y-' d/(x) = fd^ [f{x)y = |[/(^)]" + c.

Hence, whenever a differential is the product of

three factors, viz, a constant factor, a variable factor

with any exponent except — 1, and a, differential

factor which is the differential of the variable factor

without its exponent, its integral is the product of
the constant factor by the variable factor zvith its

exponent increased by 1, divided by the new ex-

ponent.*

It will be seen that the rule fails when w = — 1, since

if we divide byJ — 1 = 0, the result will be qo .

(4.) Since d (a log x) = ; (Art. 20, Cor.)

•' J-^^ J ^{alogx) =0,\ogx.

* The arbitrary constant is not mentioned since its addition is always under-

stood, and in the following integrals it will be omitted, as it can always be supplied

when necessary.
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Hence, whenever a differential is a fraction whose

numerator is the product of a constant by the differ-

ential of the denominator, its integral is the product

of the constant by the Jfaperian logarithm of the

denominator.

EXAMPLES.

1. To integi'ate dy = ax^dx.

y = J axHx =: J a- a? dx.= -^- [by (5)].

2. To integrate dy = {a + b3?YxHx^

The differential of the quantity within the parenthesis

being IbxHx, we write

y = /t^ (« + ^^Y ^^^'dx =^^. [by {S)l

This example might also be integrated by expanding the quantity

within the parenthesis, and integrating each term separately by (1),

but the process would be more lengthy than the one employed.

3. To integrate

dy ^ a {ax' + ix^)^ 2xdx + %hx^ {ax^ + boi?)^ dx.

y = r[a {ax' + bx^)^ 2xdx + 3bx^ {ax^ + bx^)i dx]

= r{ax^ + bx^)i {2ax + Sba?) dx = | {aa? + bifi)i [by {S)].

4. To integrate dy = j-—

Since the numerator must be bdx to be the differential of

the denominator, we must multiply it by b, taking care to

divide by b also ; hence,

f adx a C bdx « , , , , x ri, /m

11
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131. Fundamental Forms.—On referring to the forms

of differentials established in Chap. II, we may write down

at once the following integrals from inspection^ the ariitrary

constant being always understood.

1.

2.

3.
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dx

^/1 — x^

dx

= sin~i X.

= cos~i X.

14. y = f.

15. y-f-

17. y = f-^^ = cot-la;.

18. y — I— , = sec-i a;.

a;-v/a;' — 1

dx
19. 2/ = /

21. 2, = /

a;-\/2?^ —

1

V3a; — a;8

(?a;

V^^ic — ^

= cosec-i a;.

= Ters""^ X.

= coTers"* X.

These integrals are called the fundamental or elementary

forms, to which all other forms, that admit of integration

in a finite number of terms, can be ultimately reduced. It

is in this algebraic reduction that the chief difiBculty of the

Integral Calculus is found ; and the processes of the whole

subject are little else than a succession of transformations

and artifices by which this reduction may be effected. The

student must commit these fundamental forms to memory;

ihey are as essential in integration as the multiplication

table is in arithmetic.

132. Integration of other Circular and Trigono-

metric Functions by Transformation into the Ftm-
damental Forms.

1. To integrate dy = —

-

•

V a' — V^x^

We see that this has the general form of the differential
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of an arc in terms of its sine (see foi'm 14 of Art. 131)

;

hence we transform our expression into this form, as follows

:

^ r & ^ r dx r a

To make this quantity the differential of an arc in terms

of its sine, the numerator must be the differential of the

square root of the second term in the denominator, which

is -dx. Therefore we need to multiply the numerator by h,

which can be done by multiplying also by the reciprocal of

b, or putting the reciprocal of h outside the sign of integra-

tion. Hence,

y = r j^ _ = /"—l^ = 1 r
'^^"^

'^
's/a^ — Wx* '^ I V^x^ bJ / j2^V-? \^

a. To integrate dy = ^^

\/«3 — b^x^

Here y ^ I
^

- = /

1 . ,bx

b a

dx

AS
-dx . ,a 1 , bx

V'-?
y COS"'

J2a;3 b a

f.
dx — Jl f. -1 ^^

a!> + b^x^ ~ ab a"

4. «= /'__^_-lcot-i^.^ H J a3 + yix^ - ab
^°* «
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_ r dx \ .Ix
5. w = / —

,
= - sec~i —

•^ x\/¥x^ — a^ « <*

„ n dx 1 ,hx

«^ xV¥x^ — a^ « «

„ C dx \ .tx

•^ 'V^abx — V>x^ 5 «

o /* dx 1 , Ja;
8. V = / ,

= V coTers"^—
•^ V^oSa; — js^a;' * «

P, , /"gin a; <?a; Pd cos a;

9. V = I tan x dx = I = — / •"J J cos a; 1/ cos a;

= — log cos a; = log sec x.

r , -, PcQSxdx ,

10. y = I cot xdx = I —. = log sin x.

— C ^^ — c ^^
^ J sin a; J 2 sin ^a; cos \x

/\ sec^ (\x) dx ^ . ,

tanV = ^°S t^n i^-

_ n dx _ p ^
sm I

= logtan(j + ia;) [by (11)].

/» (?a! /'sec^ a; tZa; , ,

-: • = / —; = log tan X.
'^rry aj cos a; «/ tan x °

/dx ^ _ p (sin^ x + cos? a) dx^

sin^a; cos^a;
~ i/ sin** a; cos^a;'

(since sin* a; + cos^a; = 1) = / (secla; + cosec'a;) dx

= tan X — cot X.

15, y = J taxr'x dx = / (sec* a; — 1) c^a; = tan a? — a;.
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16. y = J cot* xdx z= I (cosec^ x — \)dx

— _ cot X — X.

17. y = J cos' a; dx = J {^ + ^ cos ^a;) dx (by Trig.)

= |a; + ^ sin 2x.

(See Price's Calculus, Vol. II, p. 68.)

18. y = Jm}?x dx = ijX — l sin 2x.

Reuabe.—It will be observed that in every case we reduce the

function to a known form, and then pass to the integral by simple

inspection or by the elementary rules. Whenever there is any doubt

as to whether the integral found be correct or not, it is well to differen-

tiate it, and see if it gives the proposed differential. (See Art. , 130.

)

EXAMPLES.

1. dy = bx^ dx.

Here y= /bx^dx= I b-x^-dx

= fJa;t [by (3) of Art. 130].

F ^dx
2. dy =

Va' + x^

= (fl2 + ;

3. dy = ^x^dx. y = ^^.

4. dy = 2xidx. y = -fa;^.

5. dy — —x'^dx. y = 5ari.

^ - dx - /-
6. ay = —p' y — %vx.

yx
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7. dy = —bmar^dx. y = — A^a^.

8. dy = (f«a;t — ^bx^) dx. y = a3^ — ia^.

12

10. dy = -^^^^^-^ljdx.
{Zaa? — a?)i

Here y = j— {3ax^ — x^)~i (2ax — x^ dx

= / —i (^a^^ — a^)~* (6«« — Sa;^) (Za;

11. <?y = {2ax — £B»)S (a — a;) <?a;. y = i[ {2ax — a^^.

133. Integrating Factor.—It has been easy, in the

examples already given, to find the factor necessary to make
the differentialfactor the differential of the variable factor

[see (3) of Art 130] ; but sometimes this factor is not easily

found, and often no such factor exists. There is a general

method of ascertaining whether there is such a factor or

not, and when there is, of finding it, which will be given

in the two following examples

:

12. dy = 3 {4:ix^ — 2ca;3)i (45a; — Sea;') dx.

Suppose A to be the constant factor required ; then we
have

y = J"— (45a;'— 2c:^)i (12Jto — 9Acx'^ydie.

If A be the required factor, we must have

d (ibx^ - 2ca;3) = {nAbx — 9Aca?) <fe,

or 85a; — 6ca;» = UAbx — 9Acx%

and since this result is to be true for every value of x, the

""^efficients of the like powers of x must be equal to each
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other, from the principle of indeterminate coefficients, giv-

ing us two conditions,

12^5 = 85, (1)

and —9Ac=— 6c, (3)

or ^ = I, from (1), and A = ^, from (2) ;

hence f is the factor required, and we have

y = A {Ux^ — 2cx^)i {8bx — 6ca?) dx

13. dy = {2ax — x^)^ {5a — x) dx.

Let A be the required factor, then

y = J -J (2fla; — oi?)i {bAa — Ax) dx.

,'. d {%ax — x^) = (5Aa — Ax) dx
;

or 2a — 2x = bAa — Ax.

.: 2a = 5Aa; (1)

and — 2 = — J
; (2)

or A = Sg, from (1), and A = 2, from {2).

These values of A being incompatible with each other,

we'infer that the differential cannot be integrated in this

form.

14. dy = (25 + 3aa;2 — 5a^)-* {2ax — 5x^) dx.

_^y = \ (25 + Zax^ — bx^)i.

15. dy =; {Zax^ + 45a^)t {%ax + 45a;2) dx.

y = \ {3ax^ + 45a;3)i

16. dy = axHx + -%. y = ^ + ^,
2yx a
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11. dy = b (5a^ — 2a;)i xdx — {bx^ — 2x)^ dx.

Here y = H^a? — 2x)i {5x — 1) dx.

y = l{5xi- 2x)i.
y_

134. A Diflferential may often be brought to the

form required in (3) of Art. 130, by. transposing a variable

factor from the differential factor to the variable factor,

or vice versa.

1 o J 2adx
18. dy = — — •

;

X y2ax — x^

Here y = j {2ax — x^)~i 2ax-^dx

=
J'-

(2aa;-i — 1)"* (- 2ax-^) dx-,

.. y =z -^2 {2ax-^ — 1)^ [by (3) of Art. 130]

_ _ 2 V2ax — x^

X

30. dy =

{^ax — a^)s a '<l2ax — ofi

axdx ax

(25a; + x^y b \/2bx + x^

n-, J adx . 2a VSbx + 4:(?x^
21. dy — y = ^ ^r^—

!

X V3bx + 4c3a;2
^ 35a;

''' 'y = U-^fi^- [See (4) of Art. 130.]

pd(a + bx + cx^)' '''.,
, , „.

y = J \ + bx + c^ r= l°g {.a + bx+ ex%+ bx + cx^

a^dx

a + 2^'23. dy = -—--^^ yz=\og(a+.23^).



aso
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39. dy = cos' (3a;) sin (2a;) dx. y — —\ cos^ {%x).

40. dy = sec^ (zf o&dx. t/ = | tan (a;)'.

41. dy — sec (3a;) tan (3a;) dx. y — \ sec (3a;).

43. dy = sin (ax) dx. y = - vers (aa;).

43. dy = tan a;e?a;. y = log sec a;.

ft

44. dy = sin d sec' 0c?O. «^ = sec d.

45. ,7y =—^ [See (14) of Art. 131.J
Vi — 4^"

y ^ sin~^ (3a;).

axdx a • _, , -^
46. dy = -j==-- «/ = 9 sm ^ («^>

VI — a;*
'^

a;^(Za;

47. (Zy =
V3 — 4a;3

Here y = J
x^dx

a/3 • Vl — 3a)3

V3 |a;'c?a;

^3 • f
'^ ^3 • Vl — 3a;3

_ /" <Z V3^
_

"~
'^ Vl — 3a;s

.'. y = ^ sin~i A/3a;*.

48. eZtf = —; ^ = I sin 1 —=•

.« T — a;& 1 _i /-v/5 \
49. dy = y = —-p cos-i

( 21!: a;M
^ V2-5:^ 3^5 W3 /

<?a; „ , / /x\
50. dy = 7^==- y = ^ cos-i

y qia; — ^' \ V a,
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63. dy = ^^-^. 2/ = ;;^ tan-i .; Vf.

64. dy = ^^±.:^. y^^^a+Vxf.

65. dy = >

—

-!- '
• y — %x Va^ + «*. i

66. (?^ = tan^ x sec' a;<?a;. y = ^ tan^ a;.

„„ , (1 — x^^ dx ,
.

a;*
67. dy =: ^^ «/ = log a;— a;2 + _.

ao J (x — 2)dx „ /- 4
68. dy = ^ y = 2Vx + —j^-

Wx

69- dy = -;^r y = ^a^—x + tan"* z.

70. dy —

Here y = f- ^^
^ ^^

9.

a'Va:
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135. Trigonometric Reduction.— A very slight ac-

quaintance with Trigonometry will enable the student to

solve the following examples easily. After a simple

trigonometric reduction, the integrals are written out by
inspection.

1. dy = tan* xdx.

Here ^ = / tan^ xdx = / (sec' x — V) tan xdx

= / [sec' X tan xdx — tan xdx^

= \ tan« X — log sec x. [See (9) of Art. 132.]

3. dy = tan* xdx.

y — \ tanS ar — tan a; + a;. [(15) of Art. 133.]

3. dy = tan^ xdx.

y = i tan* x — \ tan' a; + log sec x.

4. ^y = cot^ xdx. y — —\ cot' a; — log sin x.

5. dy = cot* xdx. y = — ^ cot^ a; + cot a; + a;.

6. dy = cot^ xdx.

y = — |- cot* X + ^ oof a; + log sin x.

7. <?y = sin' a;«fa;.

Here y = J 1(3 smx — sin 3a;) rfa;
;

(from Trig.),

.'. y = ^ cos 3a; — j- cos a;

;

or y = i ^^ ^ — cos a:.*

8. dy = cos' a;rfa;. y = sin x — ^ sin' a;,

. #

* By employing different methods, we often obtain integrals of the same
ezpressioD :*hich are different in form, and which sometimes appear at first sight

not to agree. On examination, however, they will always be found to differ only

by some constant ; otherwise they coul4 not have the sam? diSTeveptial.
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9. dy = cos* xdx.

Here y = y (cos' xf dx = J^ [1 + 2 cos 2aj

+ cos2 2a;] rfa; [See (17) of Art. 132.]

= \x + ^sm^x + \ J cos' 2a;d? (2a;)

= ia; + i sin 2a; + ^ [« + I sin 4a;]
;
[by (17) of Art. 132.]

.'. ^ = ^ sin 4a; + ;J-
sin 2a; + %x.

10. dy = sin* a;£?a;. y = ^^ sin ^x — \ sin 2a; + fa;.

11. <?y = sin^ xdx. y =: — cos a; + | cos' x — \ cos^ x.

12. dy = cos' a;rfa;. y = sin a; — | sin' x + \ sin' a;.

13. dy = sin' a; cos' xdx.

y = -j-J^ cos 6a; — ^ cos 2a;. (Prom Ex. 7.)

14. <Ztf = -. r— ^ = i sec' X + log tan x." sm a; cos' x n ^ is
15. <?y = sin' X cos' a;(?a;. y ^= \ cos' * — i cos' a;.

16. dy = cos' a; sin' xdx.

cos* a; ,, ^ „ . , .

2^ = ^ (i — i cos' a; + I cos* x).

17. (Zy = sin* X cos' a;(?a; = (sin' x — sin' x) cos xdx.

y = sin^ 2; (i}- — i sin' x).

^ „ , sin' X J
18. a« = —5— dx.

" cos' X

TT /'(I — 2 cos' X + cos* a;) sin xdx
Here y = / ~ '-

t' cos' X

= sec a; 4- 2 cos a; —
-J-

cos' x.

19. dy = cos^ xdx.

y = sinx — sin' a; + | sin' a; — 4 sin' a;.



CHAPTER II.

INTEGRATION OF RATIONAL FRACTIONS.

136. Rational Fractions.—A fraction whose terms in

volve only positive and integral powers of the variable is

called 9 -rational fraction. Its general form is

ax'" + ItT-^ + cx"^'^ + etc. . . . I . .

a'ai" + b'r-^ + c'a;»-2 + etc. . . . I" ^'

m wbich m and n are positive integers, and a, I, . . .,

a', I', . . . are constants.

When m is > or = n, (1) may, by common division, be

reduced to the sum of an integral algebraic expression, and

& fraction whose denominator will be the same as that of (1)

and whose numerator will be at least one degree lower than

the denominator. For example,

— 3? + X-
ofi — x^ \- X \-\ a^ — x^ + X + 1

The former part can be integrated by the method of the

preceding chapter; the fractional part may be integrated by

decomposing it into a series of partial fractions, each of

which can be integrated separately. There are three cases,

which will be examined separately.

137. Case I.

—

TVhen the denominator can he re-

solved into n real and unequal factors of the first

degree.

f (oc\ dx
For brevity, let ^

\ . denote the rational fraction
<t>{x)

whose integral is required, and let (x—a) {x—l) . . . (x—l)

be the n unequal factors of the denominator. Assume
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1^1 = ^- + -!- + ^- ..-li- (1)
(/) (a;) X — a . X.— b x — c ' ' ' x — V ^

'

where A, B, C, etc., are constants whose values are to be

determined.

Clearing (1) of fractions, by multiplying each numerator

by all the denominators except its own, we have

f{x) = A (x~I}){x- c). . . {x—l)+B{x—a)(x—c).. . (x—l)

+ etc. + L (x—a) (x—i) . . . (x—k), (2)

which is an identical equation of the (w— 1)'* degree. To
find A, B, C, etc., we may perform the operations indicated

in (2), equate the coeflS.cients of the like powers of x by the

principle of indeterminate coefficients in Algebra, and solve

the n resulting equations. The values of ^, B, C, etc., thus

determined, being substituted in (1) and the factor dx intro-

duced, each term may be easily integrated by known
methods.

In practice, however, in this first case, there is a simpler

method of finding the values of ^, B, etc., depending upon

the fact that (3) is true for every value of x. If in (3) we
make x^=a, all the terms in the second member will .re-

duce to 0, except the first, and we shall have

f{a) = A{a — i)(a —~c) . . . (a — T),

. Aa) _ f{a)_"
{a-b)(a-c) ...{a-l)~ <t>'{a)'

In the same way, making x=.h, all the terms of (3)

disappear except the second, giving us

/(5) = ^(5-«)(6-c)...(5-0,

B- /w _ m_
{I)'-a)ib-c) ...{b-l)~ <t>'{b)
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Or, in genet-al, the value of L is determined in any one

of the terms, =, by substituting for a; the corresponding

fix) f(T\
root I of d> (x) in the expression zrrr^; i. e., L = zttjx-

EXAMPLES.

^ ^ . , , (a;^ + 1) dx
1. Integrate dy = ^^^e^^n^ + e

'

In this example, the roots * of the denominator are found

by Algebra to be — 1, — 3,— 3.

.-. iB» + 62e2 + lla; + 6 = (a; + 1) (re + 2) (a; + 3).

Assume

a;S+6a^ + lla; + 6 a; + l^a; + 3 x + 3

.: x^ + 1 = Aipo + %) {x + Z) + B [x -^ 1) [x + 3)

+ G{x + \){x + %).

Making x = —1, we have 2 = %A, :. ^ = 1.

« x= —%, " " 5 = —B, :. B = —b.
" x= —3, « « 10 = 2C, .-. = 5.

Substituting these values of A, B, C, in (1), and multi-

plying by dx, we have

y ~ J a^ + 6x^+nx + 6

/dx r_^_ I K C ^^
^-+1 -V ^Ta "^ V a; + 3'

.-. y = log (a; + 1) - 5 log (a; + 2) + 5 log(a; + 3)

- io^
(a: + 1) {X + 3)^

~ ^^
(a; + 2)«

• If the factors ot the denominator are not easily seen, put it eqnal to 0, an^

solve the equation for x ; the first root may be found by trial, x minus each of the

Beveral roots In turn will be the factors. (See A.Igebra.)
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adx

X' — w
, , X — a ., Ix — a

3. Integrate dy = ^f^^-

ATI i 7
(5X'+ l)dX

4. Integrate dy =^-^
y = log {x — ly {x + 2)'.

5. Integrate dy = ^^-,. 2/ = ^ log (|^).

138. Case II.—When the denominator can be re-

solved into n real and equal factors of the first degree.

f(x)
Let the denominator of the rational fraction '^-)-4 con-

tain n factors, each equal to a; — a.
v*

(. ;

Assume

m = _A_ 4. :?__ , ^_
(x) {x — a)"

"'"
{x — «)"-> "^

{x — af-"^

Clearing (1) of fractions by multiplying each term by the

least common multiple of the denominators, we have

f(x) = A + B{x-a) + C(x- of

+ . . . i {x-aY-\ (2)

which is an identical equation of the (n — 1)'* degree. To
find the values of A, B, C, etc., we equate the coefficients

of the like powers of x, as in the preceding Article, and
solve the n resulting equations. The values of A, B, C,
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etc., thus determined, being substituted in (1), and the

factor dx introduced, each term may be easily integrated-

by known methods.

In this case we cannot find the values of A, B, C, etc., by the second

method used in Case I, but have to employ the first. When both

equal and unequal factors, however, occur in the denominator, both

methods may be combined to advantage.

BXAMPLES.

1. Integrate dy = ^-(^-Yy—

2 32;3 ^ BO
.-. % — Za? = A+ Bx+ 2B+Cx^+4:Gx+ 4:G.

.: A + %B + 4.C =%. (2)

B + W — 0. (3)

C = - 3. (4)

Solving (3), (3), and (4), we get

A = —10, B = 12, G = —3.

Substituting these values of A, B, and G in (1), and
multiplying by dx, we have

(2 — 3x^ dx _ _ 10(?ig 12& _ Zdx

{x + 2)3 ~ {x+ 2)8
"•"

(a; + 2)2 x + %

" y~J (a; + 2)8

K 19

8. Integrate c?^^ = ^^+^^.
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Assame

(x — 2f{x — l) (x — 'iif^{x-^)^x-l ^^'

.: x^ + x = A{x — 1) + B(x—2) (x — l)

+ G{x- 2)2. (2)

Here we may use the second method of Case I, as follows

:

Making x = 2, we find A := 6.

X = 1, " " G = 2.

Substituting in (3) for A and. G their values, and making

r = 0, we find

= —6 + 2B + 8; .: B = —1.

Substituting in (1), and multiplying by dx, we have

_ P {x^ + x) dx
y ~ J (^^^2)2 {x

—

1)

_ P 6dx P dx p 2dx
~ J (x — 2Y

~ J x — 2^ J x — 1

6

{x-2f

— log {x— 2) + 3 log (x ^ 1).
x — 2

6 , . {x-lf
• • n - x — 2'^{x-2)

- _
, , , (3x — l)dx

3. Integrate dy = , _ ',^—

y=--^ + 3\ogix-S).

A T J. ^ J x^ — Ax + 3,L Integrate dy = ^—^-^-^-dx.

y = log [x {X - 3f]i.
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139. Case III.— When some of the simple factors

of the denominator are imaginary.

The methods given in Arts. 137 and 138 apply to the

case of imaginary, as well as to real factors ; but as the cor-

responding partial fractions appear in this case under an

imaginaiy form, it is desirable to give an investigation in

which the coefficients are all real. Since the denominator

is real, if it contains imaginary factors, they must enter in

pairs ; that is, for every factor of the form x ±,a + bV— 1,

there must be another factor of the form x ±a — bV— 1,*

otherwise the product of the factors would not be real.

Every pair of conjugate imaginary factors of this form gives

a real quadratic factor of the form (x ± a)^ + b'.

Let the denominator contain re real and equal quadratic

factors. Assume

f{x) _ Ax + B Cx + D
<P (a:) [{x ± ay + t^Y [(» ± af + *]«-»

Kx + L
{x±aY + 1/ ''^^

If we clear (1) of fractions by multiplying each term by
the least common multiple of the denominators, we shall

have an identical equation of the (3re — 1)«* degree.

Equating the coefficients of the like powers of x, as in the

two preceding Articles, and solving the 2>i resulting equa-

tions, we find the values of A, B, G, etc. Substituting

these values in (1), and introducing the factor dx, we have
a series of partial fractions, the general form of each being

{Ax + B) dx

[{x±aY + V^Y'

in which n is an integer.

To integrate this expression, put x±a = z; .-. x-= z^a,

* CaWei conjugate Imaginary factors.
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dx = dz, (x ± aY — z\ Substituting these values, we

have,

J [0

{Ax + B) dx _ r{A% ^: Aa + B) dz

— f ^^^^ 4. r{B_^Aa)dz

~
2 (W - 1) (22 + &2)»-l "^

t/ (2« + b^'

(wheu ^' = J5 T Ja)

;

so that the proposed integral is found to depend on the

integral of this last expression ; and it will be shown in

Art. 151 that this integral may be made to depend finally

upon y ^TjTp' S^^^g J ^^'^"^
V '^^'^^ ^''^^' ^'^

EXAMPLES.

1. Integrate dy = „ _ ..
•

The factors of the denominator are

{x — 1) and [x^ + X + 1).

therefore assume,

a; A Bx+ O
"f" ^2 _L ^ _L 1

' \^)
a? — 1 X — 1 x^ + X + 1

.: x=z Ax^ + Ax + A + Bx^ + Cx — Bx - C.

.: A + B = 0; A- B + C =1; A — C = 0.

.: A = \; B=-i; = i-

_ r xdx _ r^ dx r^ {x — l) dx
•• y - J gfiZTl- J ^^-l J^x^ + X + 1
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= ^log(._l)-i/J^)^^; (2)

(by changing the form of the denominator,)

Put a; + ^ = 2, then a; — 1 = z — |, and dx = dz, and

the second term of (2) becomes

= - i log {z^ + i) + -^ tan-1^ (Art. 133, 3.)

V3 v3

= _^log(.. + .4-l)H--^tan-^\

(by restoring the Talue of z).

Substituting in (3), we have,

y = i [log {x-l)-i log {xi + x + 1)

+ V3tan-»^±i1.

3. Integrate dy =

V3

xMx
X* + x^ — 2

To find the factors of the denominator, put it = and
solve with respect to ay' ; thug,

X* + x^ — 2 = 0, or ic* + a^a = 3.

.-. a^ = — J ± f = 1 or — 3.

.-. x* + x^ — 2 = {ay'—l) (a;^ + 3),

A
'^^ A

,
B Cx + D ,:,.Assume ^j_j-^,_^ = -^^ + -_-^ + _-i_-. (1)

Hence a:^ = ^ (a; - 1) {x^ + 3) + 5 (a; + 1) {x^ + 2)

+ {Gx ^D){x- 1) ix + 1). (2)
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We may equate the coefficients of the hke powers of x,

to find the values of A, B, C, D, or proceed as follows :

Making « =— 1, we find J. = — ^.

" x = l, " " B — i.

Substituting these values of A and B in (2) and equating

the coefficients of a? and a^, we have

6C=0 and 6Z> = 4;

.-. C = and i> = |.

dx•* = -*/ifi + */i^i + »/5+ 1 ' '^t/x — l ' *</a;« + 3

X, /x — m
, V2, _, X

EXAMPLES.

. , {x — l)dx . (X + 4:)i

„ ._- (2x + 3)dx (x — 1)1

3. w = ---j-=^
.,. / .

... • w = log (o^ — x)." a; (a; — 1) (a; + 1)
" ° ^ '

, adx
4. dy = ' = "^ijhfx^ + ix ^ ° \x +

^ , (2 + 3a; — ia?) dx

y — log [a;i (2 + a;)* (2 — a;)].

^ , (5a; — %)dx . (x + 2)»
' ^y = wv^:^T^x y = ''^^+-i^-

12
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„ , _ («= + fag) dx

y — alogx — ^-^— iog (a^ — ^^)'

(3x — 5)dx
1

(a; — 4)^

Q /7 — ^'^^

y = -
2(x — a)

+ log {x — a)* (a; + a)^*

in ^ <^ + a;^ + 2) dx



15. dy =

EXAMPLES. 26'?

<c^dx

{x + 2)3 {X + 4)2

16. dy =

52; + 12 , /x + 4\a

(a; + 1) (3:2+1)

, = !*»-.« + log|±|.

17. J^= "^"^

x^ — x> + 2x — 2

, (« — 1)^ la;
V = log -5^ '-r — tan 1——

•

(a;« + 2)^ 3\/2 V^

18. Jy= (x^ + x)dx_

, , _, . (x - 2)t
^ = I tan 1 a; + log -

(a^s + 1)1^

19. % = ?-! + ^>^ -

^ a;3 + a;2 + a; + 1

, (.r + l)t _ -
,

2/ = log -\^ /, - i tan-i as.

(a;3 + 1)T

„. , 9a;» + 9a; — 128 ,
80. dy = -^ -^ —

—

-r dx.

, (a; -3)"
,

5

- 2a;<^?a;

21. dy =
{a? + 1) (a^ + 3)

,
(x^ + l\i

y = ^°^ix^ •
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oo J (*' — 1) ^^

23. dy =

3/ = I + log [(a; + 2)1 (a; - 2)1].

xdx

[x + l){x + 2) {a? + !)

, r(a; + 3)i (a^ + 1)^b~I



CHAPTER III.

INTEGRATION OF IRRATIONAL FUNCTIONS BY

RATIONALIZATION,

140. Rationalization.—When an irrational function,

which does not belong to one of the known elementary

forms, is to be integrated, we endeavor to rationalize it

;

that is, to transform it into an equivalent rational function

of another variable, by suitable substitutions, and integrate

the resulting functions by known methods.

141. Function containing only Monomial Surds.—
When the function contains only monomial surds, it can

be rationalized by substituting a new variable with an

exponent equal to the least common multiple of all the

denominators of the fractional exponents in the given

function.
:

For example, let the expression be of the form,

f

}dx.

m'

Put X = fS^MX.^

m' nf c' e'

dx = mnce!^'''^-^dz.

Hence dy = ^,^^^ ^ ^,^^^, mnce^^-^dz ;

which is evidently rational.
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1. Integrate dy = j dx. (1)
1 — a;«

Put a; = 2*;

then a;^ = z*j a;^ = z^, and <?ar = ez'cZz

;

(1 — g^) 625(^2% = 1—2*

= 6 («« + Z* — 2^ + 22 _ 2 ^ 1 _ _:_) ^2,
\ 1 + 2'

Integrating by known methods, and replacing z by its

value, we have

„ r^i X^ X^ xi X^ 1 , ,, ixH
2/ = 6 [^ + -g - ^ +

-3
- -^ + a;* - log (1 + a;i)J.

2, Integrate dy
2xTs — a;*

r- 5 s .1

y = - 18 1^^ + -^ +~ + 4a;i + 16a;J + 32 log(2-a;i)

142. Functions containing only Binomial Surds
of the First Degree.—When the function involves no

m

surd except one of the form {a + bx)", it can be rationahzed

as in the last Article, by treating a + bx aa the variable.

And therefore can be integrated.

For example, let the expression be of the form,

, x''dx

V a + ox

where n is a positive integer.

Put a + bx = z'l;

., , 2zdz si' —

a

, ^ («« — a)"
then dx = -t— , x = —j-^

, and af = -

—

tz
——

b b i"
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, _ x'^dx _ 3 («« — a)" dz

This may be expanded by the Binomial Theorem, and

each term integrated separately. It is also evident that the

expression

x^dx
p

{a + IxY

can be integrated by the same substitution.

1. Integrate dy =
x\/\ + X

Put 1 + x = z^; then dx — 2zdz and x=.^— 1.

, dx Mz
:. dy = —;=: = -5—

T

^Vl + X 2^-1

, 2—1 , Vl. + X — 1
or y = log —-- = log ^

2. Integrate dy

2 + 1 .V'l + a; + l

oi?dx

(1 + 4a;)t

Put (1 + 4a;) = z^

;

then cZa; = — , a:^ = ^
-^-

, (1 + 4a;)t = jS.

1 (22 _ 1)3^^
.*. dy =

138

1

128

y =

= TJz'-^+l-l\dz.

128
.^^-^^-? + ^]'



3'}'2 FtTNCttONS CONVAWmO tttlNOMtAL StiRM.

or

143. Functions of the Fonn j , where n
is a Positive Integer. (^ + *^*'^)'

Put fl + 6a;' = 2^

;

then icaa; = ^- , x* = —r—
, ar" = -^^—j-

—

'—'

x'^+^ dx _ (z' — ay dz

(a + bx^)i
~ *"^'

'

which may be expanded by the Binomial Theorem, and each

term integrated separately. It is also evident that the

expression
aj^^+i dx

{a + bx^y

can be integrated by the same substitution.

CT (JOT

1. Integrate dy =
Vl — 3?

Put 1 — a;' = z^; then xdx = — zdz, f = l — zK

3?dx ^ _ (1 _ ^3) ^^.

Vl — a;2

.-.
J,
= ^23 _ 2 _ I (1 _ a;2)l - (1 - a;2)i

„ T . X , a,-8rfa; (3a+ 3ca;3)

3. Integrate dy = r- y =—^^ -j-

(a + ca;S)t 3c2(a+CT2)|

144. Functions containing only Trinomial Surds

of the Form Va + bx ± x^.

There are two cases, according as ai* is + or —

.
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Case I.— Wheit x^ is +.

Assume Va + bx + x' = z — x;

then a + bx = z^ — 2xx; .: x =

and v a + bx + x^

b + 2z

, _ ^{z^ + 62: + a) dz

2^ — a z^ + bz + a

b + 2z 2z + b

The values of x, dx, and a/« + bx + x'' being expressed

in rational terms of z, the transformed function will he

rational, and may therefore be integrated and the z replaced

by its value Va + bx + x^ + x.

Case II.

—

When x^ is —

.

Let « and be the two roots of the equation

x^ — bx — a = ;

then we have x^ — bx — a =: {x — ec) {x — (i);

.: a + bx — x^ = — {x — a) {x — (i)

= {x — a) (P — x).

Assume
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The values of x, dx, Va + bx — x^, being expressed in

rational terms of z, the transformed function will be rational.

1. Integrate dy
^/a + bx + a?

Assume Va + bx + x^ ^ z — z;

then, as in Case I, we have

a + bx — z^ — 2zx: .-. x — ^
~ ^

..

_ 2 {z^ + bz + a) dz
ax _ ^-p^^p

/—;—
r—;—5 z^ ^bz \- a

. fh,
- 2 (jg^ + &g + a) t^g X (2g + 5)

•• "2/-
(J + 22)2 j< (2» + 5« + a)

2c?2 rfz

6 + 2« 5

2 + ^

= log

If J = 0, we have

dx

^ + a; + Vfl + te + a^ .

/-^ = log(a;+V^T^);

and if a = 1, we have

dx
y yf^p = iog(«' + vrT^).
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Had we integrated the expression -—^ without dividing both

terms of it by 3, we would have found for the intfegral the following

:

S' = log(6 + 2z) = log[6+ 3a; + 2VaTte + rc^], which differs from the
above integral only by the tei-m, log 2, which is a constant. (See
Note to Art. 135.)

2. Integrate dy = '

V « -\- bx — x^

Let a and (i be the roots oi x^ —ix — a^O; then, as in

Case II, we have

Va + bx —x' = 's/Jx — a) (f3 — x) — (x — a) z.

««» + (3

(i8 — a;) = {x — a)7?;
2« + 1

7 _ 2 (« - S) zdz {z^ + 1) _ 2dz

{z^ + ly (13 - a) z ~ 1 + z^'

. y = / ^^ ^ _ 2 /__^_
"^ Va + bx-x^ '^ l+z^

= —2 tan-i 2 = — 3 tan-i \ /^-.
V a; — «

3. Integrate dy = -

—

a;Vl + a; + a;2

Assume Vl + aj+ a;^ = z—x, and we have, as in Case I,

^-1 + 2^' ''''- (l + 2ip

1 +%z

. rh, _ a (^ + g + 1) t?^ (1 + 2g
) (1 + 2^) 2f7z

(1 + 2zf (f + « + 1) (^^^^ - 22 -1

,-^-[-~l(Art.m).
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/dx _ / ^^ /• dz

, Z — 1 , X — 1 + V^ + X + x>= log -T = log r
6^ + 1 ^a: + l + Vl + a;+^

3x= log;
3 + a; + 2^1 + a; + a;«

145. Binomial Differentials.— Expressions of the form

dy = X'" {a + bx^y dx,

in which m, n, f denote any numbers, positive, negative, or

fractional, are called binomial differentials.

This expression can always be reduced to another, in

which m and n are integers and n positive.

1st. For if m and n are fractional, and the binomial of the

form

ar*(a + hx^)" dx,

we may substitute for x another variable whose exponent is

equal to the least common multiple of the denominators of

the exponents of x, as in Art. 141. We shall then have an

expression in which the exponents are whole numbers.

Thus, if we put x = ifi, we have

ar^(a + Ix^J" dx — &z-^[a + Wydz,

in which the exponents of z are whole numbers, and the

exponent of z within the parenthesis is positive.

3d. If n be negative, or the binomial of the form

a;"* (a + lyr'^y dx,

we may put a; = - , and obtain

x'"- {a + hTT^'Y dx = — 2r»'-2 {a + Iz^ydz,

in which the exponents of z are whole numbers, and the

one within the parenthesis is positive,
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3d. If X be in both terms, or the binomial is of the form

a;"* (ax* + baf'Y dx,

we may take «* out of the parenthesis, and we shall have

^m+pt
^g ^ Ix^-'Y dx,

in which only one of the terms within the parenthesis con-

tains the variable.

146. The Conditions under which the General
Form p

dy = ar{a + baf'Ydx,

can be rationalized, any or all of the exponents being frac-

tional.

(i.) Assume a + 5a;" = zf.

p

Then (a + Ix'^Y = zK (1)

Also X = {^-rJ^)
,

and »"• = (^-^y- (a).

Multiplying (1), (3), and (3) together, we have

m+l

di/ =zcii^(a + bx'')^dx = -^ ^p+s-' \^^^)
"

dz, (4)

an expression which is rational when is an integer,

or 0.

(2.) Assume a + boif — ziaf'. -•

Then a;" = a (2» — J)-i. (1)
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.: X — a^ {!fl — b)--K (3)

VI m
.: or = a" {ifl — h)~^, (3)

dx = —^- ah {!fl — l)-^-^ zf-^ dz. (4)

Multiplying (1) by b, adding a, and taking ^ power, we
have ^

p p _]^

{a + Ix^Y = a^{z^ — b) ''^.
(5)

Multiplying (3), (4), and (5) together, we have

«"(« + byffdx = — ^a^" « "'^(«' — b)^" « ^z'+^-^dz,

7)t -I- 1 7)

an expression which is rational when —— h - is an in-

teger, or 0.* ^

Therefore there are two cases in which the general bino-

mial differential can be rationalized

:

1st. When the exponent of the variahle without the
-pa,renthesis increased by unity, is exactly divisible by
the exponent of the variable ivithin the parenthesis,

2d. mien the fraction thus formed, increased by
the exponent of the parenthesis, is an integer.

Rem.—These two cases are called the conditions of integrahUity of

binomial differentials.f and when either of them is fulfilled, the inte-

gration tnay be effected. If, in the former case, 1 is a positive

integer or 0, or in the latter case, h - + 1 is a negative integer

* The student will observe that Art. 143 is a particular case of this Article, ve-

snlting from malting m an odd positive integer, and re = 2.

t These are the only cases of .the general form which, in the present state of

analysis, can be made rational. When neither of these conditions is satisfied, the

expression, if - be a Pactional index, is, in general, incapable of integration in a

finite nqm^er of terms,
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or 0, the binomial (z' — a) or (z? — 5) will have a positive integral ex-

ponent, and hence can be expanded by the Binomial Theorem, and

each term integrated separately. But if, in the former case, 1

IS a negative integer, or in the latter, —'-—I- - + 1 is a positive inte-

ger, the exponent of the binomial (z' — 6) will be negative, and the

form will be reduced to a rational fraction whose denominator is a

binomial, and hence the integration may be performed by means of

Chapter II. But as the integration by this method usually gives com-

plicated results, it is expedient generally not to rationalize in such

cases, but to integrate by the reduction formulm given in the next

Chapter.

1. Integrate dy =: x^{a + t?)^ dx.

Here 1 = 3, a positive integer, and therefore it

can be integrated by the first method.

Let {a -fV) = z\

Then (a + x^)i = z. (1)

afi =: (2^ — a)%

a^dx = li^ — ayz^dz. (3)

Multiplying (1) and (3) together, we have

dy := aP (a + rc')^ dx = f {z^ — d^^dz.

3. Integrate dy = 1 = ar-«(l + ^Y^dx.
a;* (1 + x^y

Here^i-f2-fl = ^i-|-fl = -l,aneg-
n q 3 3

ative integer, and hence it can be integrated by the second

method.
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Let (1 + x^) = z^x\

Then a^ = {f — l)-\

x= (22-l)-i;

X-* = {z^ - If. (1)

{]. + x^) = l + (z^-l)-\

(1 + x^)-^ = a-i (2^ - l)i (3)

dx = — (;^2-l)-*2^«. (3)

Multiplying (1), (2), (3) together, we have

dy = a;-* (1 + x^)-^ dx = — {f — 1) dz.

.-. 2/ = —y (z3 _ 1) 6?2 = 2 _ ^23

_ (1 + a;S)^ ^(1 + a;3)t _ (1 + a:^)*,

32;s
(3a;8 - 1).

EXAMPLES.

(2a;i — 3a;^) <?« ,».,,,«= ^^ TT'^ (Art. 141.)1. dy
bx»

y — A^* - f•»*•
.

„ , x^ — 2xi J
2. dy = r-dx.

1 + xi

y = p^— 2x — fa;^ + Bxi + 2x^ — 6xi — 6x^

+ 6 log {xi + 1) + 6 tan-ia;i

• , 3a;4 - 3xi ,
3- dy = —^ ^dx.

3x^ + x^

y = 12 (fa;* — fa;* + ^-^^^ — 9«*)

+ 1908 [^a;A—|a;^+3a;i—^a;^ + 81a;A—343 log(a;A+3)].
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4. ay = —!—- dx.
1 + xi

a;"

4 +|-+ ilog(l+:r*)

(Art. 142.)5. dy = xdx

(1 +#
Vl +X +

Vl + a;J

(?a;

a^Va + 5a;

va '\fx

7. % = Ja;

(1 + x)i + (1 + !r)^

y = 3 tan-i (1 + a;)4.

8. dy = 4:{x + Vx + S + ^/x + 3)dx.

y = 2 {x+By—12{x+ 3) + %(x+g)i + 3 {x+3)t

(Art. 143.)
9-m JjlAltK

• dy = -^:==3
V 1 + X

10. % =

11, dy =

y = i{l + a;3)t - | (1 + a^^)* + (1 + ^)^-

3?dx 3x> + 2

(1 + a:2)t

o^dx

(1 + a;8)t"

2^= -
3 (1 + a;")'

v/l + a?'
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12. dy = ^^
(Art. 144.)

s/l + X + x>

y = log (l + 2a; + 2\/l + x + a?).

(See Art. 144, Ex. 1.)

13. dy =
Vx^ — x—1

y = log (2a; — 1 + 2'\/a;2 — x —1).

14. e?tf = ,— -=^- y = —2 tan-U /—

^

15. dy =

— X
2'

Vl +X — '.

2, = -2 tan-
V^^^-^^^

16. dy =
x-i- i-v/5

dx

(Assume \/^ + x' = z — x, etc.

I

y = V log (bx + VoM^lVi).

xVa^ + W ^ ~ a °^
\ ix ^)

18. dy=.^^^-
, 4

tf = log (a; + 1 + V2a; + x^) ,
•

a &\ -r -r -r
/

a; + V2a; + a;«

17. <Zy= "^^
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19. dy =

y

20. dy

y

31. dy

33. dy

33. dy

y

24:. dy

y

35. dy

y-

36. dy :

y

37. ^«/ :

<Za;

(1 + ^) Vl — a;2

—- tan~i
, _

V3 Wl

'\/3aa; + a^

a log (a; + « + V'3aa; + x^.

dx

Vi^^^ 2/ = i log {2x + V4a;^ - 7).

(Compare with Ex. 16.)

2dx

(Compare with Ex. 30.)

3? (3 + 3a;2)^ dx. (Art. 146.)

^^"^^ - I (3+ 3:r^)t + 1(3+ 3^^)1
37

(ii?{a + bx^)^ dx.

a^ (a + ix^)^ dx.

^i3bx^-2a){a + bx^)i.

7? {a — a?)~'^ dx.

— H« — a;^)* (3a + a;^)-

dx ^ 1 /I \

aa;

a;2 (1 + x^Y

38. e?^' = « (1 + a;2)~* <?a!
2/
=

(1 + a;2)i"
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29. dy = x-^1 - %a?)-^ dx.

30. dy = {1 +x^)ia?dx.

31. dy = xr^ (a + a?)-i dx.

(3a^ + 2«)

^ ~ ~
2a«a; (a + £c3)f

32. dy =za? (a^ + a;2)i £?«.

3/ = -^ (a' + a^)^ i^x^ - 3aS).

33. dy = a^(a + bx^)^ dx.

^ 2&M11 4 "^
5 / '

in which z = {a + bx^)i.

34. (?y = ii±M^.

2^ = f (« + ix)i + 2a{a + ix)i

+ a' log1 1«„ a/« + da; — Va
Va + bx + Va

35. (?y = (a2 + x^)i dx.

2^
=

2 ^ + 2
log [« + («' + ^)*].



CHAPTER IV.

INTEGRATION BY SUCCESSIVE REDUCTIONS.

147. FormulEe of Reduction.—When a binomial dif-

ferential satisfies either of the conditions of integrability, it

can be rationalized and integrated, as in the last chapter.

But, instead of rationalizing the integral directly, it may
be reduced to others of a simpler kind, and finally be made
to depend upon forms whose integrals are fundamental, or

have already been determined. This method is called

integration iy successive reduction, and is the process

which in practice is generally the most convenient. It is

efEected by formulcB of reduction. These formulae are

obtained by applying another, known as the formula for

integration iy parts, and which is deduced directly as

follows :

Since d (uv) = udv + vdu,
.
(Art. 16)

we bave uv = J udv + I vdu
;

/ udv'-= uv — / vdu
;

a formula in whicb the integral of udv depends upon
that of vdu.

148. To find a formula for diminishing the expo-

nent of X '^thout the parenthesis by the exponent
of dc within, in the general binomial form

Cdff^ {a + bx"^)p dx.
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Let y = J a;™ (« + ^^Y dx = J udv

= iiv —J vdu

;

(1)

and put dv = »"-' {a + ba?')" dx and u = a;"-"+i.

(a + hx")P+^
Then v = \; Z^, ;

nb (^ + 1)

and du = (m — n + 1) a;™""&.

Substituting these values of u, v, du, dr, in (1), we have

2^ = J ^- (« + *-")^ dx =—^^^^yL_

This formula diminishes the exponent ?w by ra as was

desired, but it increases the exponent ^j by 1, which is

generally an objection. We must therefore change the

last term in (3) into an expression in which p shall not be

increased.

Now x'"-" {a + &a;")^+i = a;'"-" (a + bx"Y {a + bx")

= aa;"-" {a + Ix^Y + 6a;"' (a + to')'

;

which in (2) gives

y = J ^» (« + bx'y dx = -—^^—_^
_ _
Ow-w + i ) /> „ ^^
mS (^ + 1) ./ ^ ^ ^

_^M^+1
/'a,»(^ + 5a;»)'^a;.

Transposing the last term to the first member and redu-

cing, we have
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,np + m. + 1\ f _ ^"'-"+'(« + i^^ri

m. — n + 1

nb {p + 1)

Therefore we have

/ x'^-" {a + bxfy dx.

ij = I x'^{a + bx^y dx

a;"'-"+'(a + 6a;")^*-'— (wi— ?i+ l)ft Cx'^-^ia+ bx^ydx

b {np + m + 1)

luMch is the formula required.

;(^)

149. To find a formula for increasing the exponent
of X vrithout the parenthesis by the exponent of x
within, in the general binomial form

y — jxr'*^ (a + hdC^'Y dx.

Clearing (^) of fractions, transposing the first member
to the second, and the last term of the second to the first,

and dividing by {in — n -\-\) a, we have

/'a;'"-" (« + br-y dx

^m-«+i (a^ 5a;«)?-+i_ 5(^^+ „ J + 1
) /V' [a+ b^ydx

a {in — M + 1)
(1)

Writing — vi for m — n, and therefore — m + w for m,

(1) becomes

y = I
«"'" {a + bx^'Y dx

a;-"'+'(« + fa")P+' + 5(??i— np— n—1) /"a;-"'+"(a + bogydx
= _______

;(^)

?ir/?/c/« «*' the formula required.
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150. To find a formula for diminishing the expo-

nent of the parenthesis by 1, in the general bino-

mial form

y — I ge^{a + bx^)v dx.

fx'"- {a + bai^)p dx = J <iif'{a + ba^y-^ (a + i^") dx

— aJ^ {a -f fe")P-i dx + iJ 2;"+" (a -f- hogj^^ dx. (1)

By formula {A), we have for the last term of (1), by writ-

ing m -\- n for in and p — 1 for j?,

/'a;»'+'' (a + haff-^ dx

a-m+i (^ ^ i^ny _ (,„, -\-l)a y a;"' (a -f- hx'')^-^ dx
~

h[n {p — 1) + m + n + 1]
'

which in (1) giyes

y = J x"' {a + ix^y dx = aj x"'(a + bcify-^ dx

' (a + buf'y — {m + l)a i x"' {a + bi^y-^ dx

+
{np + m + 1)

Therefore, uniting the first and third terms of the second

member, we have

y = J x"^ {a + bx^'Y dx

a;™+i (a -I- },3«y + anp f x"' {a + b:xfy~^dx

np + m + 1

tvhich is the formula required.

(0)
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151. To find a formula for increasing the exponent

of the parenthesis by 1, in the general binomial form

y = J x^{a -\- bx'^)-p dx.

By transposing and reducing (C), as we did (A) to find

(B), we have

y a;"' {a + fe.")^-i dx

a;'«+i (a -j_ bx")p — {nj} + m + 1) fx^ {a + bi^Y dx
= ^ (1)— anp

Writing — p for p — 1, and therefore —j) + i- for p,

(1) becomes

y — J x'^ {a + bx^yp dx

aj^+i {a + 5a;")-P+i—{m + n + 1— np) fx\a + lx'')-^'^^dx

=
1 ^ ;(^)

an (p — 1)

whicli is the required formula.

Remark.—A careful examiaation of the process of reduction by
these formulsB, will give a clearer insight into the method than can he

given by any general rules. We therefore proceed at once to exam-

ples for illustration, and shall then leave it to the industry and inge-

nuity of the student to apply the method to the different cases that

he may meet with.

1. Integrate dy

EXAMPLES.
Tf'dx

Here y = /a;"' (a^ — a;^)-^ dx,

a form which corresponds to

Cx"^ {a + iKi^Y dx.

13
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We see that by applying formula {A) we may dimmish

m by 2, and by continued applications of this formula, we

can reduce in to or 1 according as it is even or odd, so

that the integral will finally depend upon

— ' = sin"^ -, when m is even ;

y' xd^ 1——'- = — (a^ — x^)^, when m is odd.

Va^ -x>

Making m = m, a ^ a% 5 = — 1, ra = 3, ^ = — ^,

we have from formula (A),

y = I X'"- (a^ — x^)~i dx

= - [2 (- i) + m + 11

m

(m — 1) a^ Cr^-^ {a^ — x^)~^ dx

+ - ^
(1)

in ^ '

When m = 2, (1) becomes

P x^dx X . . ,. 1
, a^ . _, a;

When m = 3, (1) becomes

^ VO? — a;^

When ??? = 6, (1) becomes, by applying {A) twice in

succession,
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= /:

^ ^
sill"

4 • 4

(which the student may show.)

2. Integrate dy =
Va> + x^

Here «/ = / a;"' (a^ + a^)-s t?a;.

Making wi = m, a ^ c?, 5 = 1, ^^ = 2, ^ = — \,

we have foom (^),

y = I x"' (ff3 + a;2)-s dx

a:™-' (a3 + a;2)4 (w - 1 ) a^ ^= ^^ -^^

—

— / 2! " M a^ + x^) * «a;. (1)

By continued applications of this formula, the integral

will finally depend on

/ —p = log {x + Va^ + «'), when m is eyen,
"^ V «2 + x^

/ccdx 1— — (fl^ + a;^)^', when m is odd.
V a^ + x^

3. Integrate «Zy = j-

a;™ (fl!^ — a;^)'

Here y = / a;-"" (a^ _ a;3)-i flfa;^

from which we see that by applying (B) we may increase m
by 2, and by continued applications of (B), we may reduce

m to or 1, according as it is even or odd, making the

integral finally depend on a known form.
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Making m = m, a = a% b — — 1, n = 2, p = — '^,

[B) gives us

y = J a;-'" {a^ — x^)~^ dx

a,-mfi (^2 _ a;2ji _ (to _(. 1 _ 2 _ 1) I'x-^+Xa^—x'y'^ doc

~ — a^ (vi — 1)

_ _ {a> - a:^)^ (wz - 2) /' ^
When m = 2, (1) becomes

r dx (a2 _ a;2)i

.

(since the last term disappears.)

When m = 3, (1) becomes

^ f d^ ^ _ (C^_-Xj^
4- A /* '^^

^ ^ ^3 ./„2 _ o-a 2ffiV
+

'la^J ;x^'s/a^ — x^ 2ffiV 2fl2./ 2;Va- — a^

_ Vft^ — ic' 1 , a — 'Ja^-~
+57-3 log

2a2a;2 '^ ^a^
^

a;

(Ex. ] 7 of Art. 146.)

4. Integrate (?«/ = («^ — a=^)^ ^2;, when n is odd.

Here we see that by applying (C) we may diminish

n
^ by 1, and by continued applications of (C) we can reduce

^ to — \, making the integral depend finally upon a

known form.

Making m = 0,a = a^,h= -\,n = %,p = \, (0)

gives us

y = J {a^ — «2)^ dx

X (a^ — a?f + na^ f\a^ - x^)^"' dx
= ^U (1)
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Wlien w = 1, (1) becomes

/"/ 2 2\4 J ^ («^ — ^^)*
,

«^
1

a^

dx
5. Integrate cZe/ = :^, when w is odd.

Here ^ = I (a? — x^)-^ dx,

from which we see that by applying {D) we may increase

the exponent ^ by 1, and by continued applications of iD)
A/

we can reduce - to — ^, making the integral depend

finally on a known form.

Makii

gives us

71
Making m = 0, a ^= a% i = — 1, n = 2, p := -, {D)

y = J (o? — x^) ' dx

(«» — a;2)~^"^' -{3 — n)J' {a^ - x'^)'^*' dx

2a2 (i-O

+ !^^1_ r ^^_. a)"
(» - 2) «2 (a« - x^)i-' (w — 2)a^J (^2 _ ^^-

When w = 3, (1) becomes

_ r dx _ a;

'^ ~ J
(a2 _ a;2)f

~
fl2 (a2 - a;^)*'

6. Integrate dy = —7=
\/3aa; — a?

Here y = J x"' {2ax — x^)~i dx = J x"'-i(2a—x)~idx,

which may be reduced by (^) to a known form.
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Making m = ?w — |j a = 2a, 5 = — 1, w = 1, ^ =• —\,
(A) gives us

V'2aa; — x^

x'^h {2a — x)i — 2a (m — i) f'x'^-i {2a — x)-i dx

— m

= 'V2ax — x^ + ^ :—
- / — (1)m m «/ ^2ax - x^

When m = 2, (1) becomes

/x'dx X + 3a /s »—;== = s— V2aa; — x^

V2ax — x» 2

I
O (1 f ^^
|«^/.

A/3aa; — x^

X + 3a /^ :, „ , , a;—s— V2ax — x^ + ia' Ters~i -•
2 ' ^ a

x^dx
7. Integrate dy

Vl — x>

/a;5 1 5 „ 1 3 • 5 \ ,- 1-3.5.
,

8. Integrate dy = -

—

—
a;* V « + ^a?*

9. Integrate t/y = (1 — a;^)^ dx.

y z= ^x{l — x^)^ + fa; (1 — x^)i + | sin"* x.

dx
10. Integrate dy =

(1 + x^f

y = r(TT^^ + !• (TT^J + I
tan- a;.
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11. Integrate dy = — •

V^ax - x^

V = -
d' + 4| « + i • f«') V2^^^ + I • ffl8Ters-i|.

dec
13. Integrate dy = •

1 • 3 \ /:;
-„ 1 • 3 , 1 + Vn^^/ 1 , 1 • 3 \ /- -„ 1 • 3 ,

X

These integrals migM be determined by one or other of

the methods of Chapter III, but the process of integration

by reduction leads to a result more convenient and better

suited in most cases for finding the definite integrals.*

LOGARITHMIC FUNCTIONS.

152. Reduction of the Form / X (log x)"' dx, in

which X is an Algebraic Function of x.

Put Xdx = dv and log" a; = m,

.•. V =^ / Xdx and du =^ n log""* x—
Substituting in / udv =. uv — I vdu, (Art. 147)

we have y =: J X log" xdx

= log" X J'Xdx - J^n lqg"-i x —f{Xdx)

;

or by making / [Xdx) = X,

,

we have y = J X log" xdx

— log"-' xdx
;

* For a cl'scnSBion of definite integrals, see Chap, Y.
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which diminishes the exponent of log x by 1, whereyer it

is possible to integrate the form / Xdx. By continued

applications of this formula, when w is a positive intege?,

we can reduce w to so that the integral will finally

depend on

/^dx.
•^ X

ScH.—A useful case of this general form is that in which

X = x^, the form then being

y =^ J 3i^ log" xdx
I

and the formula of reduction becomes

a;"" log" xdx = ——-y log" x

-TJ ^ log"-' xdx.m +
by means of which the final integral, when m is a positive

integer, becomes.
r ,

a?"+i

/ x^'-dx = -•
^ m + 1

EXAMPLES.

1. Integrate dy = x/^ log^ xdx.

Making m = 4, and n — 2, we have

y = / X* log^ xdx

= ^^i^- -if^ log ^^^' (1)

Making m — i and n = 1, we have

fx^ log xdx = "^^ -
^
fx^dx (=

I"),
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which substituted in (1) gives us

= I (log' a; -I log a; + ^).

„ T i J. -7 a; log a; «?a;

z. Integrate aw = —-
°

Put ^ (Zw and log x =. u;

then w = Vfl^ + a;* and du = —
/xlogx dx

, , ,
„. 1 , P'\/cfi+^ ,-— ^ = (ffl2 + 2;2)4 log a; — / — dx

, „ oxi 1
/^ ffl'f^a; P xdx= {a^^x^y\ogx-J-j===-J-—==

*^ ^ya + x^ "^ ya' + a?

= {a^+x^)i loga; + a log /« + VaHa;^ _ ^^qi^j

(See Ex. 17, Art. 146.)

„ T , , 7 log X dx
3. Integrate <Zy =

^fqr^p-

2/ = j-^ log ^ - log (1 + «=)•

Put af"+i = M,

log" sc

1 dx

log" a; a;
'

then du = (m + 1) a;*" dx

1
and V =

(?i — 1) log""' a;
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_ par dx _ a;"'+i m+ 1 P TTdx
" ^ ~ J log"^ ~ "~

(ra— l)log"-'a; {n—iy log'-^x'

by means of which the final integral, when w is a positive

integer, becomes
/z'"dx

log x'

beyond which the reduction cannot be carried, for when

w = 1 the formula ceases to apply. We may, however, ex-

press this final integral in a simpler form ; thus,

Put z = ar+^ ;

then dz = (m + 1) a;™ dx and log z = (m + 1) log x.

Pardx _ / dz

J log X tJ log z'

an expression which, simple as it appears, has never yet

been integrated, except by series, which gives only an

approximate result.

Ex. 1. Integrate dy =
:j

—^- •

Here m = 4 and re = 2 ; therefore the formula gives us

/x^dx _ x^ noc^ dx

log^ x log X J log X

Put 2 = a^; then dz = ^oifi'dx and log2 = 51oga!;

therefore / , = / ,

o logx J log 2

Now put log « = M ; then z = e" and dz = e'^du.

r dz _ Pff'du
" J \ogz~ J u

= /(l + . + |V_^H.etc.).^(Art.63)
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4/3 .7/

3

= \ogu + u + ^^+^-^^ + etc.

= log (loga;5) + loga;5 + g-Jog^a^ + -^^ +etc.

^ ~ J log^ a;log^

+ 5
log X

log (log a;5) + log x^ + -^^

log^ x^
+ ^, + etc.

(See Strong's Calculus, p. 393 ; also, Young's Int. Cal.,

pp. 53 and 53.)

EXPONENTIAL FUNCTIONS.

154. Reduction of the Form J a""^ ac?^ dx.

Put a"" dx = dv and x" — u;

then V = —1 and du = nx'^~' dx.m log a

.'. y = / a a; dx = —-,

,
/ a^'x"-^ dx.

^ u in log a m log a <J

By successive applications of this formula, when w is a

positive integer, it can be finally reduced to 0, and the in-

a""dx = —H

m log a

Only a very few of the logarithmic and exponential func-

tions can be integrated by any general method at present

known, except by the method of series, which furnishes

only an approximation, and should therefore be resorted to

only when exact methods fail.
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EXAMPLES.

1. Integrate dy = af^o^dx.

Here m = 1 and nz='6; therefore, from the above for-

mula, we haye

y =^ I a^ifidx

;= , — -. / a'^o^dx; (by repeating the process)

_ a^'a? 3 /o^ 2 /'
as ri \.

log a log a \log a log « "^ /
'

(by repeating the process)

a^'a? 3a^x» G / a'^x 1 \
_L I f^Xl

log a log2 a log^ a\\og a log^ a /

= _^ /^ _ J_^l , _^ ^_V
log a \ log a log^ a log* a/

3. Integrate dy = x^e<^dx,

—:^^, when tn is a. posi-

tive Integer.

Put ar^dx = dv, a" = u;

then V =z and du = a'" log a dx.m—1 °

/ aPdx _ aP log a ra^dx

x^ ~ ~ (wT^l) a;™"^ m—1 *^ a;"""'

'

by means of which the final integral becomes

"a^dx
/'-
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which does not admit of integration in finite terms, but

may be expressed in a series, and each term integrated sepa-

rately. (See Lacroix, Calcnl Integral, Vol. II, p. 91.)

Ex. 1. Integrate dy = —g--

By the formula just found, we have

or, «/

gx /'i^dx

X

X 1 + ^ + 3 +3:3
^-'*''-

dx
(Art. 62)

^ , x^ a? .= - - + log a; + a; + ^, + ^3-, + etc.

TRIGONOMETRIC FUNCTIONS.

156. Cases in which sin™ 6 cos" ddO is immediately

Integrable.—The value of this integral can be found im-

mediately when either m or n, or both, are odd positive

integers ; and also when in + n is an even negative

integer.

1st. Let «i =: ar + 1 ; then

ysin"" e cos" e dd z= y(sin 0)2'-+i cos" dO

= J'{I — coB^ey cos"e sin e de

= — y*(l — cos^e)' cos"^9 dcos9,

an expression in which the binomial (1 — cos^ oy can be

expanded, and each term integrated immediately. In like

manner, if the exponent of cos be an odd integer, we may
assume n = ^r + 1, etc.
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2d. Let m + n= —%r; then

J'sin'^B co&"e dd = ytan»'0 (cos ©)»+»' dd

= ytaw^e [secoy'- dd

= ytan" d{l + tan2 (9)'-» d- tan (?,

each term of which, after expansion, can be immediately

integrated.

EXAMPLES.

1. dy = sm'^dcos^ Odd.

Here y = J'sm^e cos^e dB

= ysin2 0(1 — sin^ ff) d- sin

= isin^e— ^sin^e.

3. dy = —7-r dO.

/sin* /*—J-: dd = tan* sec* (Z(9

cos* J
= \ tan3 e.

3. (?«/ = sin^e cos*0 dd. y — —\ cos=0 + ^ cos'0.

4. (Z«/ = sin^ d cos^ dd.

y = —^ cos«0 (sin* + | sin*0 + |).

5. tZj^ = sin3 cos'0 dd. y = -^ cosioo — | cos^a

^- ^y = -^^'^^' i/ = itan3 0'+^tan=0.

7. <Zy =

cos*0

<?0

gin0 co§'0'
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„ _ r sec^e de _ r{i + tan^eyseo?d de
y ~ J tane cos*0 ~ J tan e

"

= log (tan Q) + tan^ + J tan* 0.

8. ay = —5 g-'
sin' d cos' 9

Let a; = tan Q
;

1
then cos Q = , sin 6

and dO =

Vl + x^ Vl + a^

dx

1 + X'a'

^"•^ sint6icos'0~'^ x^

•8 2 3 2

«* tan^e

9. J« = !^-i|£?0. M = itan*(9.
•^ cos^e ^ *

10. £?«/ = ——

.

y = iw.e + f tan^e 4 f tan=0.

157. Formulae of Reduction for

sin™ d cos" e de.A
When neither of the aboye mentioned conditions as to m

and n is fulfilled, the integration of this expression can be

obtained only by aid of successive reduction.

We might produce formulae for reducing the expression

sin"* 6 cos" d directly;* but, as it would carry us beyond

the limits of this book, we prefer to effect the integration

by transforming the giyen expression into an equiyalent

algebraic form, and then reducing by one or more of the

* See Price, Lacroix, Williameon, Todhnnter, Courtenay, etc.
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formulae (A), {B), {C), (D). Thus, put sin 6 = x, then

sin"" = ai^, cos = (1 — x^)^, cos" = (1 — x^)^, and

de = {1- x^)-i dx.

.: y = J sin™ cos" ddd = / a;™ (1 — a?)~^"dx.

or we may put cos 6 = x, and get

sin"" e cos" Odd = J — of {1 — ay>) ^dx

;

either of which may be reduced by the above formulae.

This process will always effect the integration when in

and n are either positive or negative integers, and often

when they are fractions. The method is exhibited by the

following examples.
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(by Ex. 13, Art. 151);

cos / 1 37_1 3 \ 1^
tan iO.

4 Vsiu* ^ 3 sin2 6/
"^ 3-4 ^ ^

/ , 1 + cos , sin
1 X , /, N(since — log - = log — = log tan 4ft)^ ° sm fl ° 1 + cos 6 ° ^ '

3. dxj = sin* edd.

+ f sin e) + f (

(See Ex. 10, Art. 135.)

COS ^
2^
= J- (sinS 6( + f sin e) + f0,

4. dy = cos* 0c?i9.

I CO

T
sin cos^ ^

, , • /I o , ,fl
^ = 2 h I sm cos + |0.

(See Ex. 9, Art. 135.)

158. Integration of sin"* cos" fZ0 in terms of

the sines and cosines of the multiple arcs, "nrhen m
and n are positive integers.

The aboTe integrations have been effected in terms of the

powers of the trigonometric functions. When m and n

are positire integers, the integration may be effected with-

out introducing any powers of the trigonometric functions

by converting the powers of sines, cosines, etc., into the

sines and cosines of multiple arcs, before the integration is

performed. The numerical results obtained by this pro-

cess are more easily calculated than from the powers.

Three transformations can always be made by the use of

the three trigonometric formulae.
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{1.) sin a sin 5 = 1^ cos {a — h) — ^ cos {a + h).

{2.) sin a cos S = ^ sin (a + J) + | sin {a — I).

(3.) cos a cos 5 = ^ cos {a + b) + ^ cos (« — h).

EXAMPLES-

1. dy = sin* 6 cos^ Odd.

Here sin* cos^ = sin 5 (sin cos 0)"

= sin e {^ sin 26)^ [by (2)]

=
I-

sin (sin2 20)

= i-^P^°^0 [by(i)]

= ^ sin —
-J

sin cos 40

= -^ sin — ^ (^ sin 50 — -^ sin 30)

[by (2)]

=
-J

sin — -^ sin 50 + ^ij- sin 30

.-. y = Ain^ cos« 0(Z0

= / (i sin ede — -^ sin hOdd + -j^Sg- sin 30«?0)

= —
-J

cos + ^ cos 50 — :jij cos 30.

2. dy = sin3 cos^ ddO.

y = — -^ cos 20 + y^ cos 60.

3. dy = sin' Odd.

y — ^ cos 30 — f cos 0.

4. dy = cos* 0«?0.

2^ = ^ij sin 30 + I sin 0.





308 FORMULJE OF REDUCTION.

160. Reduction of the Form

/ e"* cos" X dx.

Put U = COS" X,

and dv — (T dx;

then du = —n cos"~' x sin x dx.

and
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which diminishes the exponent of cos x by 3. By con-

tinued applications of this formula, we can reduce n to

or 1, so that the integral will depend finally on

/^dx = —, when n is even

;

or / e"" cos xdx, when n is odd.

(3) gives the value of / e'" cos x dx without an integra-

tion, since the last term then contains the factor n — 1

= 1 — 1 = 0, and therefore that term disappears.

The reduction of / e" sitfa; dx can be obtained in like

manner.

EXAMPLES.

1. dy = e" cos x dx.

II = -= r (a COS X + sin x).
" a' + 1 ^

2. dy = e°° cos^ x dx.

_ e"* cos x{a cos ic + 2 sin x) 2 e"

161. Integration of the Forms

f (oc) sia~'^ X dx, f {x) tsmr'^ x dx, etc.

Integrals of these forms must be determined by the

formula for integration by parts (Art. 147) ; the method
is best explained by examples.

EXAMPLES.
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/xdx
A

= X sm"^ X

2. dy =

Vl — a;«

= X sin~i X + {1 — x^)^.

x^ tsio-'^xdx

1 + x^

Put dv = r,
= dx —

1 + x^~ I + a^'

and M = tan~i a-

;

then V ^ X — tan~i x,

dx
and du =

,•. y = X tan^i a; — (tan~i a;)^ ~~ / (t

1 + a^

a;& tan~ia;«?a;\

+ a;« 1 + x^ J

= X tan-i a; — (tan^i xf — |- log (1 + a;') + i (tan-i a;)**

= X tan-i a; — ^ (tan-i xf — ^ log (1 + x^).

3. dy =. x^ sin^ia; dx.

y — -^ sin-i a; + ^ (a;3 + 3) Vl — ^.

dec
4. cZy = si^"^ ^

i y = ^ (sin""i a;)2.

(1 — a^)^

162. Integration of dy =

= /
W + & cos 6

de

a + b oosO

de

a ( cos' 2 + sin^ 9) + ^ (^°^^ o ~ ™' 2/
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=/

=/

{a + b) cos^ ^ + (a — S) sin* 5

BBC? ^ do

a

a + b + {a—h) tan*

^

When ayl,

<?-tan;

a + 5 + (a — 5) tan* -

tan
\a + ^-ZL\« +

tan^
Va* - S*

(by Ex. 3, Art. 132.)

When a < 5, we have, from (1),

y
t' « H- cos t/

<?-tan -

(1)

5 + a — {b — a) tan*

J VS + fl + VS — a tan
^—-^=^=r log ^

V5* — a* , , Q
\b + a— Vb — a tan -

The integral of

(by Ex. 5, Art. 137)

de

to be
a + b sin d

can be found in like manner

ft ft

^
asm^ + bcos^

tan~i — , when a'>b;
(a* - b^)i

(^2 _ j2)i cos
8
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n

a tan ^ + 5 — (S« — a^)i

and = f log
,

when a < 5.

There are other forms which can be integrated by the

application of the formula for integration by parts (Art.

147). Those which we have given are among the most

important, and which occur the most frequently in the

practical applications of the Calculus. The student who
has studied the preceding formulae carefully should find no

difficulty in applying the methods to the solution of any

expression that he may meet with, that is not too compli-

cated.

The most- suitable method of integration in every case

can be arrived at only after considerable practice and famil-

iarity with the processes of integration.

EXAMPLES.

vl — a;'

2. dy = a^dx

Vl — x^

/afi
,

1-3 \ /- -.
,
1-3 . ,

„ , x'^dx
3. dy = —

7

,_ /^
I

1-6^
I

l-4-6^,
.
l-2-4.6 \ ,j-^^- \7 +5-7 +3.5.7^+1.3.5.7/^

. dy = —

-

Va + W
1 /„ . 4aa;2

,
U\ ,—,-5-5
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dx

\6a
+

1-5

6a;6 ' 4:.6a;* ' 2-4:-6x^
+

1-3-5
iJA/r

1-3-5
, 1 + Vl

• 4-6
log

6. dy = dx

y = -

a;Vl + X

log {^^±^^\
a; • " \v^i + a; +

(See Ex. 1, Art. 143.)

dy = (a^ — x^^ dx.

y — ^x {a^ — a?f + -^ a^a; (a^ — a;^)^

+ /4-^«*a;(«'-a;^)* +
a;

6-4:-3 6-4-3 a

8. (?t/ = a;^ (1 + a;^)^ c?a;. y = 5a;3 —

2

3 5
(1 + a«)i

10. dy =

£?«/ = (1 — a;^)t dx.

y = ix{l— a;2)t + |a; (1 — a;^)* + | sirr^x.

dx

(a + bx^)i

y ^ Ifl + tea "^
a/

11, dy =

y =

+

(?a;

BaVa + ix^

{a + Ix^Y

1

+ +
(a+ fe«)2 ^ 3« (a+fe8) ^ 3a2 SaVa+Sa^'
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33. dy z= d^a^dx. y = e'^{x*—ici!^+ 12x^—Mz+ 2i).

23. dy = xa'^dx. y = :; I x — = )^ ^ log a \ log a/

24 dy = xHHx. . y = e'^ (a,« — 2x + 2).

35. dy = ^. y = -e-^ {<>? + 2a; + 2).

26. dy = a'^dx

^ "^ ~ £(1 + * log") + -^- (l°g =^ + l°g '''^

+ ilog8«.|- + etc.)-

27- ^^2/
=
-^^irn^- 3/ = log («- + e-).

28. dy = e^'e^dx. y = e^.

^xdx ^
^^- ^^ = (iT^)V y = i^x

„„ , (1 + a;2) e'^dx (x — 1\
30. dy = ^ ^ / ,, y = ef (—-—)^

(1 + xf ^
Vl + a;/

[Put (1 + a;) = z ; then x^z — 1, dx-= dz, etc.]

sm^d dd ,.,,.„ ^

31. dy — ^-- (Art. 156.)"
cos^ ^

'

y =. sec + 2 QoaO —\ cos^ 0.

33. dy = sin^ (9 cos^ Odd. «/ = | sin* (9 — f sin^ 6.

33. dy^^:^^^. 2^ = fcosi0-2cosie.
cos^0

34. dy = '^^^-- y = ismie-^smie.
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mxamplm. m
44. dy = sin^ 6 dd. (Art. 158.)

y = -^smie—l sin 26 + p.

45. dy = cos* dd.

y = ^sm4:d + i sin 2d + |0.

46. dy = ain^ede.

y — -^ (— ^ sin ee + ^ sin 40 — J/ sin 2d + 106).

47. <?y = ** sin a; <?a;. (Art. 159.)

y = — x* cos X + 4a,'8 sin x + 12a? cos a;

— 34a; sin x — 24 cos x.

48. % = e"^ WD?x dx. (Art. 160.)

e" sin a; , . „ , 2e'
y = —r—,—T (« sm a; — 3 cos x) -\ r—-—5^-

49. (?^ = e' sin^ a; cZa;.

y = -jijfe* (sin^ a; + 3 cos^ a; + 3 sin .r — 6 cos x).

a sin kx -{ k cos fe
oO. dy = e"" sin fo dx

, a;^<?a; sin"' a;

51. dy =.

y

(Art. 161.)

{a? + *«) e"^

Put dv

'S/I — X^

,
and Id = m.rr^x; then

Vl — !0^

— i{a? + 2) VT^~^ (by Ex. 1), etc.

y= _^(a;2 + 3)Vl-a?-sin-ia;+ -+|

63. dy = -^ sin~' x.

Vl-a?

X.

X*
y = [-Ka^+|3T)V'l-a:'+T^sin-ia;]sin-ia;+— +.j^a;2,
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53. dy = Ax

2 + cos X

—= tan~i

EXAMPLES.

(Art. 163.)

54. dy = x^dx

V% — ^x +a?
(See Formula 43, p. 345.)

y =^ (3 - 3:c + CK^)4

+ i log [at - 1 + (3 - 3a; + a«)*].



CHAPTER V

INTEGRATION BY SERIES— SUCCESSIVE INTEGRA-

TION INTEGRATION OF FUNCTIONS OF TWO
VARIABLES—AND DEFINITE INTEGRALS.

163. Integration by Series.—The number of differ-

ential expressions which can be integrated in finite terms is

very small ; the great majority of differentials can be inte-

grated only by the aid of infinite series. When a differen-

tial can be developed into an infinite series, each term may
be integrated separately. If the result is a converging

series, the value of the integral may be found with suflBcient

accuracy for practical purposes by summing a finite number
of terms ; and sometimes the law of the series is such that

its exact value can be found, even though the series is infi-

nite. This method is not only a last resort when the

methods of exact integration fail, but it may often be em
ployed with advantage when an exact integration would

lead to a function of complicated form ; and the two methods

may be used together to discover the form of the developed

integral.

EXAMPLES.

1. Integrate dy = ——— in a series.

By division,

1 \ X :j^ 7^ ,= - -
ra + -, ~ zi + etc.

a -\- X a c? a^ a^

r dx ri X x^ ^^
, . \j

y = / —;— = / I s + -,
i + etc. ) dx
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X x^ a;' x/^

^""^ /^ = ^°S(«+^)- [Art. 130, (4).]

/Tf /"mi /7^ lyA

,. log(a + «:) = ---, + 3_-_, + etc.

2. «?^ = a;* (1 — a;2)4 t^a;.

Expanding (1 — x^)i by the Binomial Theorem, we have

a. /y2 o^ /y6 ^T^
-x^)i = l-----^^----eto.

/* 1 /, a;2 JK* a;6 5a;8 ^ \ ,

= fa;^ — |«^ — iis:^^ — Th^:^' — t4ts^'^' — etc.

3. dy =
1 + a;2

5-^, = tan-la; [Art. 131, (16)]

a;^ a;' a;' a;'

= '"-3+5-7+9- '*''•

. , dx
'L dy =

a/1 + a;*

-=== = log (a; + Vl =h ^)
VI + x^

[Art. 144, (1)]

_ ^_ 3a;5 3 5a;''-* 2-3 + 2:4:5 -3:1:6:7 + ^*''-

rf^ = a;~4 (a; — l)t dx.

y = \x^ — 4a!i + ^a;-f + ^\-^x-^- — etc.
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164. Successive Integration. —By applying the rules

previously demonstrated for integration, we naay obtain

the original function from which second, third or w"^ dif-

ferentials, containing a single variable, may have been

derived.

If the second derivative -y^ = X be given, when X is

any function of x, two successive integrations will be

required to determine the original function y in terms of x.

Thus, multiplying by dx, we have

^ - Xdx-

or d{^ = Xdx.

Integrating, we get

^ = fxdx = X, + Ci.
dx t/

Multiplying again by dx and integrating, we get

y — fx.dx + fcdoo = X, + G,x + 0^.

Similarly, if we had -^ = X, three successive Integra-

tions would give

y = Xs+ Cj^ + O^x + Oi, and so on.

Generally, let there be the n*'>' derivative

p = x
dx"^

'&) = ^^-'



323 SUCCESStVB tNtM&BANdK

hence, by integi-ating we have

Again, we get from this last equation,

and by integrating,

1^^ = X, + ax + C,.

Also from this we obtain

d (y-s:|) = ^idx + CiX dx ^- C^sda;,

and integi-ating,

And continuing the process we get, after n integrations,

y d^'y = J Xd^

- ^'' •" ^' 1.2.3 . . . (m - 1) + ^' 1-2.3 ... (w - 2)

+ . . . . C„_.a; + C„. (1),

The symbol J Xdaf" is called the n^ integral of Xdx",

and denotes that n successive integrations are required.

The first term X„ of the second member is the »<* integral

of Xdx", without the . arbitrary constants ; the remaining

part of the series is the result of introducing at each

integration, an arbitrary constant.
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165. To Develop the n*^ Integral / Xdx"' into

a Series.—By Maclaurin's theorem, we have

+ (/H 1.2.3. M.--1) + (-^) iT^I:::^

\rfa;/l.i
+

.2... (w + 1)

in which the brackets

(^fxdxA, (y"~X^af-') .... (^/Xdxj,

are the arbitrary constants

for that is what these expressions become respectively,

when a; = 0.

By Maclaurin's theorem, we have

^ ,^, ,

(dX\x
,
/(^2X\^

,
/d^X\ x^

, , ...

which may be converted into (1) by substituting for

aP, x^, x^, a?, etc., in (2), the quantities

, etc.,
1.2...W' 2.3... (w + 1)' 3-4... (re + 2)

Since — / Xax" = I Xdz"-'-
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and prefixing the terms containing the arbitrary constants

as above shown, viz..

X ^ X-
C„, C„-ij, C'»-!i.3, • • • • ^>i.2.3...(ra-l)'

(See Lacroix, Oalcul Integral, Vol. II, pp. 154 and 155.)

EXAMPLES.

1. Develop / —
•^

a/1 - a;2

Here X = (1 - x^yi

, , 1-3 ^ 1-3-5 „= 1 + ia;2 + —ja^ + ^-^-^ a;" + etc.

Substituting in this series for a;", x*, a;*, a;*, etc., the

quantities

a^
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or -t4 = &CIX + C,.

Multiplying by dx and integrating again, we haye

^ = Zax^ + C,x + Cs.

Multiplying again by dx and integrating, we have

3. Integrate (?'«/ = sin x cos^ a; £?a^.

Put sin a; = 2

;

.-. (?« = cos xdx,
I

and (?s^ = cos^ x dx^
;

.*. dJ^y = zdz^;

from which we get

y = ^-+ C,z+ C;

sin^ a; _ . _,
.-. y = —g h t/, sm X + Cb.

4. Integrate d^y = ax'dx^

5. Integrate (^3/ = 2a;~8<?a;5.

y^^+^ + o^ + c,.

y — logx + —- + C^ + Ct.

6. Integrate <?*«/ = cos x dx^.

2^ = cos a; + —- + -^- + 0^ + C4.
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166. Integration of Functions of Tivo or More
Variables.—Differential functions of two or more Yari-

ables are either partial or total (Art. 80). When partial,

they are obtained from the original function either by

differentiating with respect to one variable only, or by
differentiating first with respect to one variable, regarding

the others as constant; then the result differentiated with

respect to a second variable, regarding the rest as constant,

and so on (Art. 83). For example,

are differential functions of the first and second kinds

respectively, in which m is a function of the independent

variables x and y. From the manner in which the

expression ^u _ j,,

^2 -•'^'''2/)

was obtained (Art. 83), it is evident that the value of v,

may be found by integrating twice with respect to x, as in

Art. 165, regarding y as constant; care being taken, at

each integi'ation, to add an arbitrary function of y, instead

of a constant.

167. Integration of -^t-^f[x, y).

This equation may be written

dy \dxl •> ^ ' '^'

It is evident that -^ must be a function such that if we
dz

differentiate it with respect to y, regarding x as constant,

the result will be f{x, y).

Therefore we may write

^^=J'f[x,y)dy.



INTEGRATION OF PARTIAL DIFFERENTIALS. 337

Here, also, it is evident that u must be such a function

that if we differentiate it with respect to x, regarding y as

constant, the result will be the function

Hence, ^ = V J f{^> y)dy ^^•

Therefore, we first integrate with respect to y, regarding

X as constant,* and then integrate the result with respect to

X, regarding y as constant,* which is exactly reversing the

process of differentiation. (Art. 83.)

The above expression for u may be abbreviated into

fff («. y)% ^« or fff i^^ y) d^ dy-

We shall use the latter form
; f that is, when we perform

the «/-integration before the a;-integration, we shall write dy

to the right of dx.

It is immaterial whether we first integrate with respect to

y and then with respect to x, or first with respect to x and

tlien with respect to y. (See Art. 84)

In integrating with respect to y, care must be taken to

add an arbitrary function of x, and in integrating with

respect to x to add an arbitrary function of y.

In a similar manner, it may be shown that to find the

value of u in the equation

d?u ., .= /('(^j y, z),
dx dy dz

we may write it

u = I I J f{x, y, z) dx dy dz,

* Calleel the ^-integration and a-integration, respectively,

t On this point of notation writers are not quite nnifoCB. SeeTodhnnter'sOs' )

p. 78 ; also Price's Gal., Vol. 11, p. 281.
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which means that we first integrate with respect to z, regard-

ing X and y as constant; then this result with respect to y,

regarding x and z as constant ; then this last result with

respect to x, regarding y and z as constant, adding with the

2-integratiou arbitrary functions of x and y, with the

^-integration arbitrary functions of x and z, and with the

a;-integration arbitrary functions of y and z. (See Lacroix,

Calcul Integral, Vol. II, p. 206.)

EXAMPLES.

1. Integrate dJ^u = ix^ydx^

Here
^(t~)

~ bx^ydx.

•' ^ ~ fi^V^ = \bci?y +f{y).

du = \b7?ydx .+ / {y) dx.

.: u = ^I>xH/+f{y)x + <l>{y).

2. Integrate ^u = 2x^y dx dy.

Here ^\^) ~ ^^^ydy.

•'• & ^ S'^x^ydy = xy + {x).

du = x^dx + (p (x) dx.

••• w = Wy' + fi> («) dx +f{y).

3. Integrate d^u = Sxy^dxdy.

u = ixY + f<t> (a;) dx +f(y).

4. Integrate dJ^u = a3?y^dxdy.

u = ^^y^ + f<l>(x)dx+f{y).
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168. Integration of Total Differentials of the First

Order.

If u — f{x, y),

we have (Art. 81),

, du , du ,

ft fit nil
in which -j- dx and -j- dy are the partial differentials of u;

cicc ciy

also, we have (Art. 84),

d?u d^u

dx dy dy dx'

d ldu\ _ d ldu\ ,^.

dy \dx/ ~ dx \dy/ ^ '

Therefore, if an expression of the form

du = Pdx + Qdy (3)

be a total differential of u, we must have

du _ ^ du _ ^
d^- ' dy~ ^''

and hence, from (1), we must have the condition

dP _dQ , ,

dy ~ dx' ^ >

which is called Euler's Criterion of Integrability. When
this is satisfied, (2) is the differential of a function of x and

y, and we shall obtain the function itself by integrating

either term ; thus,

u = fPdx+f{y), (4)

in which f{y) must be determined so as to satisfy the con-

dition

du _
dy-^-



330 EXAMPLES.

Remabe.—Since the differential with respect to x of every term of

u which involves x must contain dx, therefore the integral of Pito will

give all the terms of « which involve x. The differential with respect

to y of those terms of u which involve y and not x, will be found only

in the expression Qdy. Hence, if we integrate those terms of Qdy
which do not involve x, we shall have the terms of u which involve y
only. This will be the value of /(y), which added with an arbitrary

constant to fPdx will give the entire integral. Of course, if every

term of the given differential contain x or dx, f(y) will be constant.

(See Church's Calculus, p. 274.)

EXAMPLES.

1. du = ^^fdx -I- '?,yhiHy.

Here P = ^Y, Q = da^K

.: ^ = nxY and ^ = na?y\
ay " dx '^

Therefore (3) is satisfied, and since each term contains x

or dx, we have from (4),

u = fiafly^dx = x*y^ + C.

2. du = f+{2y-^~;jdy.

(3) is satisfied, therefore from (4) we have

^dx

Since the term %ydy does not contain x, we must have,

from the above Remark, f{y) = fiydy = y% which must

be added to -
,
giving for the entire integral,

M = - + «»+ C.

3. du = ydx + xdy. u = xy + C.

4. du = {&xy — y^) dx + (3a? — 2xy) dy.

u = 3x^y — y^+ C.
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0. du = i^axy — 363;^^) dx + («a^ — Ix^) dy.

u = ax^y — byx^ + G.

The limits of this work preclude us from going further in

this most interesting branch of the Calculus. The student

who wishes to pursue the subject further is referred to

Gregory's Examples ; Price's Calculus, Vol. II ; Lacroix's

Calcul Integral, Vol. II ; and Boole's Differential Equations,

where the subject is specially investigated.

169. Definite Integrals.—It was shown in Art. 130

that, to complete each integral, an arbitrary constant C
must be added. While the value of this constant remains

unknown, the integral expression is called an indefinite in-

tegral; such are all the integrals that have been found by

the methods hitherto explained.

When two different values of the variable have been sub-

stituted in the indefinite integral, and the difference between

the two results is taken, the integral is said to be taken

between limits.

In the application of the Calculus to the solution of real

problems, the nature of the question will always require

that the integral be taken between given limits. When an

integral is taken between limits, it is called a definite

integral.*

The symbol for a definite integral is

f{x) dx,/:
which means that the expression f{x) dx is first to be inte-

grated ; then in this result b and a are to be substituted

successively for x, and the latter result is to be subtracted

from the former ; b and a are called the limits of integra-

tion, the former being the superior, and the latter the

inferior limit. Whatever may be the value of the integral

* In the Integral Calcnlns, it is often the most difficult part of the work to pass

firom the indefinite to the definite integral.
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at the inferior limit, that value is included in the value of

the integral up to the superior limit. Hence, to find the

integral between the limits, take the difference between the

values of the integral at the limits.

In the preceding we assume that the function is continu-

ous between the limits a and b, i. e., that it does not become

imaginary or infinite for any value of x between a and i.

Suppose M to be a function of x represented by the equa-

tion

u =f{x);

then du =f [x) dx.

Now if we wish the integral between the limits a and I,

we have

u^ f'f'(x)dx=f{b)-f{a).

If there is anything in the nature of the problem under

consideration from which we can know the value of the

integral for a particular value of the variable, the constant

C can be found by substituting this value in the indefinite

integral. Thus, if we have

du = (abx — bx^)^ (ab — 25a;) dx,

and know that the integral must reduce to m when x = a,

we can find the definite integral as follows:

Integrating by known rules, we have

u = i {abx — fe2)t + C,

which is the indefinite integral ; and since u = m when,

x=^ a, we have

m = 0+ C; .: G = m,

which substituted in the value of u gives

M = I [abx — bx^)^ + m.
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EXAMPLES.

1. Find the definite integral of du = (1 + ^x)^dx, on
the hypothesis that u = Q when a; = 0.

The indefinite integral is

Since when a; = 0, m = 0, we have

« = m + ^' .-.

8

27ffl'

which substituted in the indefinite integral, gives

for the definite integral required.

3. Integrate du = Qoi?dz between the limits 3 and 0.

Here f" Qx^dx =

'«?2; =

•°° «?a;

/q a** + ^^

4-a;3

3. u = / x"dx =
«/o |_w + 1

4. u z= I e~'

5. u =

6. M = / -

2a;3

1

3 *

54.

ra + 1

= -(0-l) = l.

tan-i -

L «_
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7.

CHANGJi OF LIMITS.

dx

+ X^
tan"

1 IT= - rtan~i 00 — tan"' (— oo )] = -•
a'- ^ '' a

P" dx
sin" 2'

Eemaek.—It should be observed here tliat the value of the Infini-

tesimal element corresponding to the superior limit is exelvded, while

that corresponding to the inferior limit is included in the definite in-

tegral : for, were this not the case, as — becomes equal to oo

when x = a, the integral of Ex. 8 between the limits a and would

not be correct ; but as the limit a, being the superior limit in Ex. 8,

and that which -renders infinite the infinitesimal element, is not

included, the definite integral is correct. (See Price's Calculus,

Vol. 11, p. 89.)

9. « = fid" — x^)idx. (See Ex. i, Art. 151. J

- {a^ — a;«)i + ^ sin"
a'n

10. = i
^' x^dz

Vl — a;'

_ l-3-5- 7r

"
2.4.6.a"

(See Ex. 7, Art. 151.)

11. sin'' X cos* X dx = 4^

3-5-7-11

170. Change of Limits.—It is not necessary that the

increment dx should be regarded as positive, for we may
consider x as decreasing by infinitesimal elements, as well as

increasing. Therefore, we have
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f\' {x) dx^<t>{a)-^ {b) = _ [0 (&) _ ,^ (a)]

= — / 0' (2;) dx.
<J a

That is, i/ we interchange the limits, we change the

sign of the definite integral.

Also, it is obvious from the nature of integration (Art. 139), that

pc nb pc
I (p(x)dx — I <p{x)dx + I <p [x) dx,
Ja Ja Jb

and so on. Hence,

/^TT /'i^ Oi^ Z^?""

/ COS xdx ^ I cos X dx + I cos x dx + I cos x dx
Jo Jo JiiT Jhn

+ I cos X dx

= / COS a; t^s + / cos x dx = 0.

Jo Jiir

Also, f"'f'{x)dx= f f'{x)dx+ nf<{x)dx. (1)
J-a J -a Jo

Let x = — x; then dx— — dx, and the limits and — a become

and + a ; therefore we have

/lO /^O pa
/ f'(x)dx=z- / f'{-x)dx= / f'{-x)dx,
J -a da Jo

which in (1) gives

/ta pa pa
f'{x)dXr= / f'{-x)dx+ / f{x)dx

a Jo Jo

= fj [/' (-a;) dx +r (CB) etoj. (3)

Now if /' (—3!) -—f {x), (3) becomes,

ff (X) dx = 0.

J-a
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But if /' {~x) =/' (a), we have

J'(x)dx =
J^

f'(x)dx, (3)

which in (1) gives / f'{x)cl,x = % f {x)dx. (4)
./-a t/O

The following are examples of these principles.

/iir
cos X dx.

Here f'{—x)=f'{x) = cos a;.

cosa; flfa; = 2 / cosa; (?a; = 3.

.7jn-

2- ^ = y_ sin a; & = 0. [Since/' (—2;) = —/'
{x),}

3. w = /""(aS _ a;3)i& = 2 P {a^ - xAkdx = —

.

4. u— smxdx= I' smxdx+ fsmxdx^0 Jo Jin

= 2 / sin a; dx.

Since J sin a; <?a; = y ""sin a; ^a;~] = 2.

= / cosa;e?a;=
f cosxdx+ fcosxdx—O.

Since / cosa;<?a;= — / cosa;&;.

(See Ex. 2, Art. 162.)

5. u

6. u
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1. Integrate du

X
M = —\-

EXAMPLES.

dx

Va^ — x^

by series.

jfi l-3a;5 l-3-5a;'
+ « A ^-. + s-r-^i^ + etc.

But/

therefore,

^^^^ = sin-i - (by Ex. 14 of Art. 131)

;

V a* — a;^ ^

sm
a; _ a; a;^ l-3a^ l -3-5.'i;'^

a ~ a + 3T3^3 + 27475^ + 2^4. 6- 7a'

dx

+ etc.

3. Integrate du =
VH- a,-*

_ X ^5_5 l-Sa:" 1.3-5a;'8

^-1~'2.5 +3-4.9 2.4.6-13 +

dx
3. Integrate du =^ ,^

Vi - «'

By the Binomial Theorem,

(1 _ ^x^)k.

Vl — ^^ = 1 — ifi^-'^'' 5"-; „ , — — etc.

(?.r

Multiplying by
yl — a;^

arately (see Ex. 1, Art. 151), we haye

2-4 2.4-6

and integrating each term sep-

=/ dx

Vl — ^'
(1 — e^a^)*

= sin~i X + \e^

+

]

2-4

-y/l — o? — \ sin"i a;

/xs
,

l-3-a;\ /, ^ 1-3 . _,

(4- + -2:4-)^'-"-3r4«'^^^

15
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+
1.3-e6

2-4-6

r' 1.5a;3 1.3-5a;
+ 4-6

+ ^4T6 )
^1

4. Given d?y-\Ax\ to find «^.- (Art. 164.)

^ = logx + ^Ciic^ + G^ + C3.

5. (Z*?/ = —x-^dy^.

2/ = I log a; + i(7,a;s + ^C^"^ + 6'3a; + C4.

6. AHj = a^ids?. y = -^x^ + i^i-'^ + ^^^ + ^>-

7. <?3^ = SxhlxK y = -^Sx^ + C,x + C,.

8. d'^y = cos X sin* x dx^.

y = \ cos' a; + Oi cos x + C^

9. d*y = cos a- (Za;*.

y = CO&X + iC^a? + ^C^a;* + 0,x + G,.

10. «j:v = «"<^^'- y = ^ + iC,x» + C^+ Ci.

11. <ZV = (1 + x^)-^dx\ (Art. 165.)

a^ a^
«/ = C4 + Caa; + C4 ^ + Ci^jg + ^_g_^

7? +
1-3x8

'2.3.4.5.6 "^2-4-5-6-?-8

1.3-5a;K'

2-4-6-7-8-9-10 + etc.

12. dH — ax^yHxdy.

u - ^a^y^ + f(p{o;)dx +fiy).

13. du = {%xy^ + 9x^y + Sa;') dx + {2x^y + 3a;») dy.

u — oi?y'^ + 32fiy + 2x^+0.



SXAMPLm. 339

14 M = /""(a^ - a^)t dx = 2 /""(a' - x>)i dx.
'^—a ^0

(See Art. 170.)

w = 3-5

r^ x*dx
15. u = I

'^0

V, =z

V2ax — a;2

7-5.3

4-3-3
a'rr.

16. . = ^'.3(l_,)f^,=_^
13

17. M " /
' -^— (1 - e^xni (See Ex. 3.)

_ TT 1 jTT 1-3 ^TT 1.3^-5e«7r

- "-2~4^ 2~33.42^ 2 22.43.68 3" ^ '

•»!"• pxxdxdy
18. M

a;^ + t/^'

(Art. 167.)

We first perform the z^-integration, regarding x as con-

stant, and then the integration.

'0
\

X X

=y„ 4^^=16-

/lo /^a; />8/

19. ?< = / / / a;y2; <?a; dy dz
VQ OQ Oq

X dx. (Art. 132, Ex. 3.)

'Jffl -T-S

y„y„ i'^'^^y^i 8^^=48-

20. u = I / I dxdydz =
^0 '^0 '^0
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21. u= / rHQdr^ -r-

/J IT /iSffi COS 9

For the convenience of the student, the preceding' 'or-

mulse are summed up in the following table.

TABLE OF INTEGRALS.
CHAPTEE I.

Elementary Forms. (Page 33Sj

1. J{dv + dy — dz) = v + y — i. (130)

'ii. f"ax-dx = —-. (131)

Padx a

{n — 1) a?'-i

padx ,
4. y — = « log X.

5. r a'' log adx ^^ a\

6. / ei'dx = e*.

7. y cos xdx z= sin a;.

8. / sec' xdx z=. tan a;.

9. / sec 'X tan xdx = sec .r.

«

* The arbitrary coustaut is understood. (See Art. 131.)
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10. / . —r^ = -, sm-i — • (132)

11 r dx 1 5a;

lo /" (/a; 1 , 5a;

•^
a: \/lfio^ — a^ a a

^„ r dx 1,5®
13. / ,

= T vers~i — •

14. / tan xdx =: log sec a;.

15. / -.— = losr tan ix.
tl smx ° *

CHAPTEE 11.

Eational Fractions. (Page 356,)

16. f/MJ^ ^ rj-dx i "Bdx
^^ /"^^ /i3^)'J <l>[x) J X — a IX — 5
'

' J I — x^ '

rf{x)dx
^^- J -Jlx)'

_ P Adx n Bdx f Ldx
-J {x-a)"^J (,r-a)»-i"^J (x-a)' ^^^^^

18 rfj^dx^ n {Ax + B) dx

'J 4) (x) J \{x ± a

4.4. C {Gx + D)dx
, r{Kx + L) dx

^^ J '\ix + a)2 + 521"-' ^ "J (a; + fl)3 ,
52- ^^^«J

(p{x) ~ J [(a; + af + ¥Y
+ D)dx n{Kx -f

[(a; ± a)8 + 52]"-' "^ V (a; ± flpT5'''

^ W^W ~ Mb ^^ \a — bxl'

P adx . Ix — a
20- y.Tz:T^ = i°gV-"+^'
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CHAPTER III.

IbHational Punctioks. (Page 269.)

[where 2 = (a + lx)^\ (142)

' ^ {a + bx>)i
~ ^ *"+'

'

[where e — (a + ix^)i]. (143)

23. /- ^^-^== = log(|+ a:+ V^b^+^\ (144)

24. /'-=^= = - 2 tan-i , /^^
"^ Va + bx — x^ y x — a'

[where a + bx — a? =: (x — «) — x).

(—-1)
25. fx"'{a+ baf')idx= 3^f!^+i-'->i^^::^

"
dz,{U&)

(where 2* = a + 5.?;")

;

or =;— ^a(""^«^«)y(2'— 5)(^"^^'^') «(?+?-')
(?2,

(where a;V = a + 5a;").

26. r^== -?= log (:^^«±§=lA^)
. Ex. 6, (146)

^ a;A/a+ 5a; V« V ^ /

27. f--M:^-^==\ log (5a;+ Va'+SV). Ex. 16.

28. f ^—^llogN^^-\ Ex.17

=_llog(^^?).



fORMVLJB Of INTEGBATTON. 343

39. f--^^= = a log (a;+ fl+ V^ax+a?). Ex. 20.
'^ V^ax+a?

30. f{a^^a?)^dx

= %(a^+ x^)^+^ log \x+ («2+ a;3)4]. Ex. 35.

OHAPTEK IV.

Successive Eeductiok. (Page 285.)

31. fudv — uv — fvdu. (147)

32. J'x'^ {a + Ixy dx (148)

ar^+^{a+ ia^y+^—{m.—n+ l) a Cx'^-''{a-\-Wydx
t^ (j\\

b {np + m + 1)

33. y r-"" (« + hx^'Y dx (149)

ar-^+^a + ba^y+'^ + 5(m— »p— w— 1) y a;-"+"(« + Ixtydx
-_

_a(m-l) •^^">

34. /'a;'" (a + fe")^ fZa; (150)

»;"'+' (a + Sa;")? + aw» I x'^ {a + iu^Y'^ dx

^ "l— ((7)
np + m- + I

35. faf (a + te")-^ dx (151)

af+Va+ Ja!")~»'+'—(m+ n+ l—np) fx'"(a + I)3f)-^+^dx

36. jx^ {a!> — 3?Y^ ^^

- ^^ (fl8-a;2)i + i^inl) a^ fy^^ /^a _ ^ay^ ^j..
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37. JtT (fl' + a;2)-J dx

m ^ m J \ I
/

38. /:
dx

a;" (a* — a?)^

_ — (a^ — a?)i m — 2 P d^
+

t — 2 r
(m — l)fl2af»-'

"^
(»i — 1) fl2 1/ 2..B-2/^a _ ^%\\'

39. f(a>-a?fdx

40. /:

n + 1

dx

ia^ — x*)i

n—3 P dx_x w—

3

/*

{n-%)a\a^-x^yi-^ in—2)a'^ (a2-a;2)|-' -

.^ /• afdx

= y2ax — x^ + ^ — / -

m mo.
42. / x^'dx

Vffl -\- hx \- ex*

V^ax—pe^

r »•-

= a;"-> Va + 6a; + ca?* n — 1 a P . -»^-?&

^^c « c*^ Vfl + Saj + cajS

2n—l b r af-^dx *

:/2w ct/ y'a^jaj.H-'

.* See Price's Calonlus, Vol. 11, p. 63.
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V« + ix + cx^

dx
,

Ix U\
,
IW a\ r

+ bx-\-cx^

xdx
44. f-^^ ya + bx + c^

_ Va+ bx+cx^ I f _ ^^

i'.

•#/

2c '^ \/a+ 6a;+ ca;^

4:5. / a:^ log" a;(?a;

7 log" X / x" log"-i a;Ja;. (152)m +

46. A^^J log" a;

.+
(w — 1) log"~"^ X n — \<J log"~i a;

+ 1 rr'-dx

47. //'
logz

1 1= log (log z) + log 2 + 22
log^ ^ + gTplog'^+etc.

48. A""^" <^^ = ^"^^^ r— A""^"""' ^«^- (154)J m ]og a m log a fy

AC /^^ _ _ "'''

4- i5i£ /"^ (155^
y a;™

~" (m — 1) ce™-'
"^ m — !«/ af"-' '^ ^

50. /"sin™ e cos" ^9

= — f(l — cos2 e)-- cos" M cos 0, (156)

* See Price's Calculus, Vol. 11, p. 63.
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(when m = 3r + 1) ;

or = Aan" e (1 + tan' oy-^d tan 0,

_ (when ??( + w = — 3r)

;

or^^^» = / a:" (1 — x*)~^dx, (when a; = sin 0). (157)

51. /a;" cos ax dx

*"~S \ nln—l) f „ , , /, KAN=—2-(«a; sm aa;+ w cos ax) ^—j—- / a;"~^ cos aa; aa!.(159)

.„ /" „ , ' e''°'cos''~''a; (acosai+ wsina;)
52. / e™ cos" xdx = —^-^5- ^ -,

—'-

o c? -\- w
n {n — 1) r^^ ^^^^, ^ ^^^
a^ + w^ 1/ ^ '

53. Ain-i a; c^a; = a; sin-i a; + (1 — a;2)i (161>

54. /• ^__
^ a + h cos

=_^ 1 rV^+Vg^tan j-|

VS^-a^ ^I'^b+a—^b—atz.np

/n T '7*2 'r"~^

Xrfa;" = C„ + C„_. ?+ CL, j^+. .C,j
•2.3.(ra-l)

• ^^^l-%-i...n^ Wa;Jl-2-3... {n + 1)



CHAPTER VI,

LENGTHS OF CURVES,

171. Length of Plane Curves referred to Rectan-

gular Axes.—Let P and Q be two consecutive points on

the curve AB, and let {x, y) be the

point P ; let s denote the length of

the curve AP measured from a fixed

point A up to P. Then

PQ = ds, PR = dx, EQ = dy.

Therefore, from the right-angled

triangle PEQ we have m n

Fig. 43.

dx.

ds = ^dx^ + dy'^;

hence, s = fy/dx^ + df = J'
{l + ^j

To apply this formula to any particular curve, we find

the value of -~ in terms of x from the equation of the
dx

curve, and then by integration between proper limits s

becomes known.

The process of finding the length of an arc of a curve is

called the rectification of the curve.

It is evident that if y be considered the independent

variable, we shall have

'=/(>-£)**dyh

The curves whose lengths can be obtained in finite terms

are very limited in number. "We proceed to consider some

of the simplest applications

;
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172. The Parabola.—The equation of the parabola is

y^ = %'px

;

dtl p
hence, -f-

=^—
• ; .- ax y

or '"'s = -f{f + y^)^dy, (which, by Ex. 35, Art. 146)

= r/^^_+/
+ 1 log {^y + Vi7« + f) + a (1)

If we estimate the arc from the vertex, then s = 0,

y = 0, and we have

0=|logiJ+^;^ .-. C=-|logi>,

which in (1) gives

s 3- + 3 log
^^ ^ j , (2)

which is the length of the "curve from the vertex to the

point which has any ordinate y. If, for example, we wish

to find the length of the curve between the vertex and one

extremity of the latus-rectum, «/ = p, we substitute p for y
in (2), and get

s = W2+|log(l + A/2)

for the required length.

We have here found the value of the constant C by the

second method given in Art. 169. We might have found

the definite integral at once by integrating between the

limits and p, as explained in the first method of Art. 169,

and as illustrated in the examples of that Article. Hence,
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we need not take any notice of the constant G, but write

our result * KJ ; '

s = - f^{f + y^)^ dy, (see Art. 169)
'"

and integrate between these limits.

173. Semi-Cubical Parabola.*—The equation of this

curve is of the form 'f = ao?. (See Fig. 39.) A^A - '^^

TT % 3 /— ^ %' » nn "
^^

Hence, -^ z= ^yax and -^^ = \ax. * ' -

s = J (1 + ^ax)i dx

=-- ^^Jl + iax)i + a

If we wish to find the length of the curve from A to P,

we must integrate between the limits and 3p (see Art.

128, Ex. 9) ; hence,

s = f^{l + lax)Ux = "~ (1 + lax)^

= 4(H-¥«^)t^4

= 2^ [(1 + ^P)^ ^ 1] = ^ (3t - 1),

g
by substituting ^— for a. (See Art. 125, Ex. 1. Compare

Ex. 10, Art. 128.)

174. The Circle.—From af + y^ = r% we have

dx y

* This was the first curve which was rectified. The anthor was William Neil,

who was led to the discovery, about 1660, by a remark of Wallis, in his Arithmetica

Infinitomm. See Gregory's Examples, p. 420,
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Heuce, for the length of a quadrant, we have (since the

limits are and r),

Ja \ fl Jo ^r« — ai2

= psin-i^
I

=rir7r,

which involves a circular arc, the very quantity we wish to

determine. The circle is therefore not a rectifiable curve

;

but the above integral may be developed into a series, and

an approximate result obtained.

By Ex. 1, Art. 170, we have

_r (X _^ l-3.-r5 l-3-5a;7 \n ^

^ - \j\r + 2.3r3 + 2.4.5r5 + 2.4.6.7?-' + ']q

[. 1 1-3 3-5 ^ \

= 'V + %r^+ 37475 +^2^76:7 + ^^•) '

1 1-3 3-5
•"• i'^ = 1 + 2:3 + 2:4:5+ 3:4:6:7

+'*'

By taking a sufficient number of terms, reducing each to

a decimal, and adding, we have 7r= 3. 141592653589793 + .

For the approximation usually employed in practice, w is

taken as 3.1416, and for still ruder approximations as 3^.

175. The Ellipse.—From y^ = (1— e^) {a^—x% we have

^ = - (1 - e«) - = - ?-^^^2.
dx 'y ^/a^ — x^

To find the length of a quadrant, we must integrate be-

tween the limits and a ; hence.
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This integration cannot be effected in finite terms, but
may be obtained by series.

Put - = z; then dx = adz. When x — a, z = l, and

when X = 0, 2 = 0; therefore the above integral becomes

t/o ' Vl — 2*

(by Ex. 17, Art. 170), which is the length of a quadrant of

the ellipse whose semi-major axis is a and eccentricity e.

176. The Cycloid.—Prom x — j'vers~i- — V^ry—y^
we have

dx _ y
Jy 's/'Hry — y^

= v3r / {%r — y)-^dy
'Jo

= 1—3 {%r)^ (ar - y)*

a-

= 4?-,

which is 1^ tbe cycloidal arc; *

hence the whole arc of the cy-

cloid is Sr or 4 times the diam-

eter of the generating circle.

If we integrate the above ex- Fig. 44.

pression between y and 2r, we get

s = V^ f (3r — y)-^ dy = % (2r)* {%r — y)*

= 2-v/3r {2r — y) = arc BP.

But BD = VBA X BC = V2r{2r-y)',

.: arc BP = 2 times chord BD.*

* This rectification was discovered by Wren. See Gregory's Examples, p. 421.



352 INVOLUTE OF A CIRCLE.

177. The Catenary.—A catenary is the curve assumed

by a perfectly flexible string, when
its ends are fastened at two points,

A and B, nearer together than the

length of the string. Its equation is

lif+e-^).y

Hence,

dy 1/1 -i\

If s be measured from the lowest point V, to any point P
{x, y), we have

' = I
X" ("""

+

''') ^"^ = U'°- '~')-

178. The Involute of a Circle.—(See Art. 124.) Let

C be the centre of the circle,

whose radius is r ; APE is a

portion of the involute, T and

T' are two consecutive points

of the circle, P and Q two

consecutive points of the in-

volute, and (j) the angle ACT.
Then TCT' = PTQ = d^,

and PT = AT = r(p.

.-. ds = PQ = rcpdtj)

;

'"'£• *S'

.-. s = rj'(l>d(j} = iri)^ + G.

If the curve be estimated from A, (7= 0, and we have

s = \rf.

For one circumference, = 2Tr ; .. s = ^r {^Ttf = grw*.

For n circumferences, = "Unn ; .: s = \r (2w7r)' = %rn^-n\
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179. Rectification in Polar Co-ordinates.—If the

cuiTe be referred to polar co-ordinates, we have (Art. 103),

n I drW
hence we get ^ — J \f + ^) ^^'

« = y (1 + -^ j
^r-

180. The Spiral of Archimedes.—From r = ad, we

have
dd _1
dr a

1 /" 1

+
2 °^\ a /'2a

(see Art. 172), from which it follows that the length of any

arc of the Spiral of Archimedes, measured from the pole, is

equal to that of a parabola measured from its vertex, r and

a having the same numerical values as y and p.

181. The Cardioide.—The equation of this curve is

?' = a (1 + cos d).

Here -^ = .— a sin d,
aa

and hence s = J'[_a^ (1 + cos df + a^ sin^ 0]^ dB

= aJ^{2 + 2cose)ide

cos ^ dd = 4a sin 5 + C
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If we estimate the arc s

from the point A, for which

= 0, we have

s = 0; C=0.

Making =ztt for the

superior limit, we have

s = 4a sin ;t = 4a,
Fig. 47.

which is the length of the arc ABO; hence the whole

perimeter is 8a.

182. Lengths of Curves in Space.—The length of

an infinitesimal element of a curve in space, whether plane

or of double curvature, from the principles of Solid Geom-
etry (see Anal. Geom., Art. 169) is easily seen to be

Hence, if s denote the length of the curve, measured from

some fixed point up to any point P (x, y, z), we have

/.

=/D+(i)'H-(ir dx.

If the equations of the curve are given in the form

y = f{x) and z = ^ {x),

dtj dz
we may find the values of -^ and -r- in terms of x, and

then by integration s is known in terms of a;.

* The E^tudent who wants further demonstration of this, is referred to Price's

Cal., Vol. I, Art. 341, and Vol. II, Art. 164; De Morgan's Dif. and Integral Cal.,

p. 444 ; and Homersham Cox's Integral Cal., p. 95.
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183. The Intersection of Cycloidal and Parabolic

Cylinders.—To find the length of the curve formed by the

intersection of two right cyhnders, of which one has its

generating lines parallel to the axis of z and stands on a

parabola in the plane of xy, and the other has its generating

lines parallel to the axis of y and stands on a cycloid in the

plane of xz, the equations of the curve of intersection being

y^ = 4:px, z =z a vers~i - + V'2«a; — x^.

^-y = JP and'f^^v/?^^^;
\ X ax \. X

Here ,

ax

= (^+l + 'i-^fci^ = iP + 2a)i'''
Vx

Estimating the curve from the origin to any point P, we

have

_dx

x^

/"" . /7'r , ,-= {p+ 2a)i —^^2{2J + 2a)i V^.
«/o x^

EXAMPLES.

1. Rectify the hypocycloid whose equatiow is

»;' + «/' = a^.

Ans. The whole length of the curve is 6a.

z

2, Rectify the logarithmic curve y z= ie.

Ans. s = a log f + V^ + p + C.

« + V «' + y^

• 3. Rectify the curve e"" = ~
r- between the limits

x=.\ and a; = 3.

s = log (e + e~^).
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4. Eectify the evolute of the ellipse, its equation being

©'+©* = '•

Put a; = « cos' d, y = P sin' 0;

then dx = — 3a cos' 6 sin d dO,

dy = '6!ism^d cos Ode

;

.: s = df "(«« cos' d + !^ sin' (9)* sin cos e dO

"~
««-i3''

(»S flS

therefore the whole length is 4 -
" «' — /32

If /J = a, this result becomes 6a, which agrees with that

given in Ex. 1. (See Price's Calculus, Vol. II, p. 203.)

5. Find the length of the arc of the parabola x^+ y^ = a^

between the co-ordinate axes.

Put X = a cos* B, y = a sin* ;

.: s = 4:a I (cos* d + sin* 0)^ sin 6 cos B dB

= — -^ ^"(1 + cos«3(9)i<? cos 26
V2'^o

= a + -~\og (Va + 1).

6. Find the length, measured from the origin, of the

curve / ,j_\

a? = a^h. — e'j.

Am. s = a log f _ ) — x.
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7. Rectify the logarithmic spiral log ? = 6 between the

limits u and r,. j^ns. s = (1 + m^)^ (r, — r„).

8. If 100 yards of cord be wound in a single coil upon an

upright post an inch in diameter, what time will it take a

man to unwind it, by holding one end in his hand and

traveling around the post so as to keep the cord continually

tight, supposing he walks 4 miles per hour ; and what is the

length of the path that the man walks over ?

Ans, Time = 51^ hours; distance = 204^^ miles.

9. Find the length of the tractrix or equitangential

curve.

If AB is a curve such that PT,

the length of the intercepted

tangent between the point of

contact and the axis of x, is

always equal to OA, then the

locus of P is the equitangential

curve.

Let P and Q be two consecu-

tive points on the curve ; let

{x, y) be the point P, and OA = PT = a. Then

PQ _ fl

PR~v'

Fig. 48.

dy y

(the minus sign being taken since «/is a decreasing function

of s or x).

Hence. = —a / -^ = —a iogy

= a log
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This example furnishes an instance of our being able to

determine the length of a curve from a geometric property

of the curve, without previously finding its equation.

The equation of the tractrix may be found as follows :

PK _ PM
EQ "" MT

'

hence t^ = —^
',

dx ^a^ _ yi

^a y

_ PJ a^dy fy ydy

y^/a? — y* "^0 Vcfi — y^

= « log
y
—- - (« - y)""-

(See Ex. 17, Art. 146.)

This curve is sometimes considered as generated by attaching one

end of a string of constant length (=a) to a weight at A, and by

moving the other end of the string along OX ; the weight is supposed

to trace out the curve, and hence arises the name Tractrix or Trnctory.

This mode of generation is incorrect, unless we also suppose the fric-

tion produced by traction to be infinitely great, so that the weight

momentum which is caused by its motion may be instantly destroyed.

Price's Calculus, Vol. I, p. 315.

10. A fox started from a certain point and ran due east

300 yards, when it was overtaken by a hound that started

from a point 100 yards due north of the fox's starting-point,

and ran directly towards the fox throughout the race. Find

the length of the curve described by the hound, both having

started at the same instant, and running with a uniform

velocity. Ans. 354.1381 yards.

This example, like the preceding, may be solved without finding

the equation of the curve.
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11. Find the length of the helix, estimating it from the

plane xy, its equations being

a; = a cos (p, y := a sin (p, « = c-p.

Ans. s = (a» + c^)^<p.

1 3. Find the length, measured from (p = 0, of the curve

which is represented by the equations

X = (2a — h) sin <p — {a — b) sin' 4>,

y = {2b — a) cos (p — (b — a) cos' <p.

Ans. s = \{a -\- b) ^ + ^ {a — b) sin <p cos <p.

I'd. Find the length of the curve of intersection of the

elliptic cylinder ay + V^x^ = aW, with the sphere

a^ + y' + «^ = a^.

Ans. 2TTa.



CHAPTER VII.

AREAS OF PLANE CURVES.

184. Areas of Curves.—Let PM and QN be two con-

secutive ordinates of the curve AB, and let {x, y) be the

point P ; let A denote the area included

between the curve, the axis of x, and

two ordinates at a finite distance apart.

Tlien the area of the trapezoid MPQN
is an infinitesimal elemen t whose breadth

is dx and Avhose parallel sides are y and

y + dy; therefore we have

M N

Ffff. 49.

dA _ y + jy + dy)

2
dx = ydx,

since the last term, being a differential of the second

order, must be dropped.

Jy dx,

the integration being taken within proper limits. If, for

example, we want the area between the two ordinates

whose abscissas are a and b, where a > 5, we have

J ydx. (1)

In like manner, if the area were included between the

curve, the axis of y, and two abscissas at a finite distance

apart, we would have

A- = j xdy,

where c and d are the y-limits.

(2)



QUADBATURE OF THE CIRCLE. 361

185. Area between Tvro Curves.—If the area were

included between the two curves AB and db, whose equa-

tions are respectively y ^ f {x) and y

«/ = (/> (x), and two ordinates OD and

EH, where OT) — h and OH — a,

we should find by a similar course of

reasoning,

pa^= / UiP^) —'t>{x)]dx. Fig. 50,

The determination of the area of a curve is called its

Quadrature.

186. The Circle.—The equation of the circle referred to

its centre as origin, is y^ ^ a^ — x^ ; therefore the area of

a quadrant is represented by

A — r\a^ — a;2)i dx

= r^i^^ + f gin-i -X (See Ex. 4, Art. 151.)
L 2 a ajQ

_ aV
"~ T'

therefore the area of the circle = -na^.

Also, if OM = X, the area of OBDM
becomes

A = r(a^ - x^)i
^0

dx

=c
x (a^ — x^)i

,
a^ -i^V

—i—;-

—

— + :r sm~i -•

2 ^3 a

Fig. 51.

This result is also evident from geometric considerations

16
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for the area of the triangle OMD = "- {a^ — x^)^, and the

area of the sector ODB = ^r sin"' -•
a a

Bemabk.—The student will perceive that in integrating between

the limits a; = and x = a, we take in every elementary slice PQRN
in the quadrant ADBO ; also integrating between the limits a! =
and X = X = OM, we take in every elementary slice between OB
and MD."

187. The Parabola.—From y^ — %px,

we have

y = 's/^px.

Hence, for the area of the part 0PM,
we have

^

A = V^p / x^dx — f V^p xi ; i. e., ^xy.

Therefore the area of the segment POP',

cut off by a chord perpendicular to the axis, is f of the

rectangle PHH'P'.

188. The Cycloid.—Prom the equation

X ^= r vers"' - — 's/%ry — y^,

H

O
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Therefore the whole area = Znr^, or three times the area

of the generating circle.*

189. The Ellipse.—The equation of the ellipse referred

to its centre as origin, is

ay + Trx^ =
therefore the area of a quadrant is represented by

h

a<
A=- (a^-xf-dx

7> 2

= -~ (See Art. 186)' = JaSTr.

Therefore the area of the entire ellipse is -nal.

190. The Area between the Parabola y"^ = ax
and the Circle y^ = 2ax — xK— These curves pass

through the origin, and also intersect at ^ ^^
the points A and B, whose common abscissa

is a. Hence, to find the area included

between the two curves on the positive side

of the axis of x, we must integrate between

the limits a; = and a; = a. Therefore,

by Art. 185, we have

A = f\(2ax — x^)i — (axyi] dx Fig. 53.

na''
\a^

;
(See Ex. 6, Art. 151.)

which is the area of OPAP'.

* This quadratnre was first discovered by Eoberval, one of the most distin-

gnished geometers of his day. Galileo, having failed in obtaining the quadrature

by geometric methods, attempted to solve the problem by weighing the area of the

curve against that of the generating circle, and arrived at the conclusion that the

former area was nearly, but not exactly, three times the latter. About 1628,

Koberval attacked it, but failed to solve it. After studying the ancient Geometry

for six years, he renewed the attack and effected a solution in 1634 (See Salmon's

Higher Plane Curves, p. 266.)
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191. Area in Polar Co-ordinates.—Let the curve be

referred to polar co-ordinates, being the pole, and let

OP and OQ be consecutive

radii-vectores, and PE an

arc of a circle described with

as centre ; let {r, 0) be the

point P. Then the area of the

infinitesimal element OPQ
= OPE + PEQ ; but PRQ is

an infinitesimal of the second order in comparison with

OPE, when P and Q are infinitely near points ; conse-

area OPE = —

—

quently the elementary area OPQ

Hence if A represents the area included between the curve,

the radius-vector OP, and the radius-vector OB drawn to

some fixed point B, we have

A = ij'rm.

If 13 and « are the values of corresponding to the points

B and C respectively, we have

=^rrm.

192. The Spiral of Archimedes.— Let ?• = ;r- be

its equation. .Then

A = TT J.r'^dr = \-nr^ + C.

If we estimate the area from the pole, we have .4 =
when r — 0, and .•. C = ; hence,

A =inr%.

which is the value of the area passed over by the radius-

vector in its revolution from its starting at c to any value,

as r.
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If we made B = Zn, we have r = 1 ; therefore

A = l-rr,

which is the area described by one revolution of the radius-

vector. Hence the area of the first spire is equal to one-
third the area of the measm-ing* circle.

If we make d = 2 (sJtt), r == 2 ; therefore

A = fTT,

which is the whole area described by the radius-vector

during two revolutions, and evidently includes twice the

first spire -|- the second. Hence the area of the first two
spires = fw — -J-t = ^n, and so on.

EXAMPLES.

1. Find the area of y = a; — a:^ between the curve and
the axis of x. Ans. \.

The limits will be found to be a; = 0, k = + 1 ; also ic = 0,

a; = - l.f

2. Find the area oi y :=z a? — V^x between the curve

and the axis of x. Ans. ^¥.

3. Find the area of ^ = a;^ — ax^ between the curve and

the axis of x. Ans. -^aK

4. Find the whole area of the two loops of a^y^

= s^ (a* — x^). Ans. ^a\

5. Find the area of x^ = a^ between the limits y =!)

ftnd y = c. A » t^ — c" Ans. 2a?—

^

—
iic

6. Find the whole area of the two loops of a'^y^

= aWx^ — *'a^. Ans. ^ab.

* See Anal. Geom., Art. 158.

+ The stndenl should draw the figure in every case, and determine the limits of

the integrations.
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7. Find the whole area of a^ = a? {^a — x). (See

Arts. 150 and 188.) Ans. to'.

8. Find the whole area between the Cissoid y^ =
and its asymptote. (See Art. 103.) . „

~~

9. The equation of the hyperbola is a^y^ — W^ = — a^jsj

find the area included between the curve, the axis of x, and
an ordinate. xy ah , Ix + 's/x^ — a^,og(^+^

10. The equation of the Witch of Agnesi is

a?y = 4a« {2a — y)

;

find the area included between the curve and its asymptote.

Ans. AaH.

11. Find the area of the catenary VPMO, Fig. 45.

Ans. n (e« — e"" j = a {y^ — a*)i.

13. Find the area of the oval of the parabola of the third

degree whose equation is cy^ = (x— a) (x — b)^. (See

Art. 142.) . 8 ,- ^B
' Ans. TT—p (o — ap.

13. Find the area of one loop of the curve

ay'i = x^ {a" — x^)i.

Ans. -fal

14. Find the whole area between the curve

xY + aW = ay
and its asymptotes. Ans. %-nal}.

15. Find the whole area of the curve

©'-
(I)' = -

Ans. JrraJ,
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16. Find the area included between the parabola y^ = 2px

and the right line y = ax.

These two loci intersect at the origin and at the point whose ab-

scissa is -^ ; hence the a;-limits are and ~ ; therefore. Art. 185,

A = J (
Y^2pa; — ax)dx = ^^, Ana.

17. Find (i) the area included between the parabola

y^ = "ipx,

the right line passing through the focus and inclined at 45°

to the axis of a;, and the left-hand double ordinate of inter-

section. (See Art. 185.)

Also find {2) the whole area between the line and parabola.

(1.) Here the CB-Iimits are found to be 1(^/2 + 1)'^ and | (^8—1)"
|

hence we have

•^ — / [V^^ "^ dx — (x — ^p) dxj

^^(Vz-iY

= iV^P <«' — W + iP""

KVa+i)"

^{V2-if

= Vi'" - 3^/2p' + \/2p^ = p^ (V- - 3\/3). Ans.

{S) Ans. ip^V^"

18. Find the whole area included between the four infi-

nite branches of the tractrix. Ans. ira'.

19. Find the area of the Naperian logarithmic spiral.

Ans. \r^.

20. Find the whole area of the Lemniscate r* = a^ cos 20.

. Ans, a\
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31. Find the whole area of the curve

r — a (cos W + sin %d).

Ans. TtaK

22. Find the area of the Cardioide. (See Art. 181.)

Am. |7ral

33. Find the area of a loop of the curve »• = « cos nd.

Ans. -r—'
in

34. Find the area of a loop of the curve

r =^ a COB nO + i sin nO.

. a^ + i^ n
Ans. —r^ <

4 n

35.. Find the area of the three loops of the curve

»• = a sin 3d. (See Fig. 33.)

Ans. -7—
4

36. Find the area included between the involute and the

evolute in Fig. 46, when the string has made one revolution,

Ans. 1?%*.



CHAPTER VIII

AREAS OF CURVED SURFACES.

193. Surfaces of Revolution.—If any plane be sup-

posed to revolve around a fixed line in it, every point in the

plane will describe a circle, and any curve lying in the plane

will generate a surface. Such a surface is called a surface

of revolution ; and the fixed line, round which the revolu-

tion takes place, is called the axis of revolution.

Let P and Q be two consecutive

points on the curve AB ; let {x, y) be

the point P, and s the length of the

curve AP measured from a fixed point

A to any point P. Then MP = «/,

NQ = .y+ dy, and PQ = ds.

Denote by S the area of the surface

generated by the revolution of AP
around the axis OX; then the surface generated by the

revolution of PQ around the axis of x is an infinitesimal

element of the whole surface, and is the convex surface of

the frustum of a cone, the circumferences of whose bases

are 2-ny and 'In {y+ dy), and whose slant height is PQ = ds

;

therefore we have

ds = ^-y + ^-^^y+M PQ = ^^ygs,

since the last term, being an infinitesimal of the second

order, must be dropped. Therefore, for the whole surface,

we have

8 = ^nj'yds = %7Tjy\/dx^ + dy%

Fig. 55.
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the integral being taken between proper limits. If for

example, we want the surface generated by the curve be-

tween the two ordinates whose abscissas are a and t, where

a > 5, we hare

In like manner it may be shown that to find the surface

generated by revolving the curve round the axis of y, we

have

S = 2tt J xds.

194. The Sphere.—Prom the equation of the gener-

ating curve, x^ + y^ = r^, we have

« = (f' — a;^)^ and ~ = ;n ^
' Ax y^

.; S = %nJ y{l + -S dx = 2ttJ rdx = 2nrx + G.

Hence, the surface of the zone included between two

planes corresponding to the abscissas a and 5 is

S =2Tr frdx = 27:r (a — b);

that is, the area of the zone is the product of the circum-

ference of a great circle by the height of the zone.

To find the surface of the whole sphere, we integrate

between + r and — r for the .^-limits ; hence we have

S =2nr J dx = 2nr [r — (— r)] = inr^;

that is, the whole surface of the sphere is four times the

area of a great circle.

Remark.—If a cylinder be circumscribed about a sphere, its convex

surface is equal to 2ir?- x2r — iwr^, which is the same as the surface

of the sphere. If we add Sirr'' to this, which is the sum of the areas

of the two bases, we ishall have for the whole surface of the cylinder
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Qnr'. Hence the whole surface of the cylinder is to the surface of the

sphere as 3 is to 2. This relation between the surfaces of these two

bodies, and also the same relation between the volumes, was discovered

by Archimedes, who thought so much of the discovery that he ex-

pressed a wish to have for the device on his tombstone, a sphere

inscribed in a cylinder. Archimedes was killed by the soldiers of

Marcellus, B. c. 813, though contraiy to the orders of that general.

The great geometer was buried with honors by Marcellus, and the

device of the sphere and cylinder was executed upon the tomb. 140

years afterward, when (Jicero was questor in Sicily, he found the

monument of Archimedes, in the shape of a small pillar, and showed
it to the Syracusans, who did not know it was in being , he says it was
marked with the figure of a sphere inscribed in a cylinder. The
sepulchre was almost overrun with thorns and briars. See article

' Marcellus," in Plutarch's Lives, Vol. HI, p. 120.

195. The Paraboloid of Revolution.— From the

equation of the generating cuiYe if = "ipx, we have

y = VW^, and | = i ^/l'

••• S = 2^^/ V3^ (l + Y^^dx = 2WpX{p+ 2x)idx

= [i^ Vp(p + ^^)^]= i^ ^p Up + 3^)^ - /] . (1)

which is the surface generated by the revolution of the

part of the parabola between its vertex and the point

h> y)-

We might have found the surface in terms of y instead

of X, as follows :

dx _y
dy~p'
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= ^i{f + y^Y^ - p^l

which result agrees with (1), as the student can easily

Terify.

196. The Prolate Spheroid (See Anal. Geom., Art.

191).—From the equation of the generating curTC

yi = (1— e2) {at — z%
we have

27r yds = 2n Vl — e' Va^ — ^ ds

— 2tt Vl — e^ Va^ — e# dx (Art. 175.)

= ^TT - e ( - — x^y dx,

therefore for half the surface of the ellipsoid, since the

tc-limits are a and 0, we have

a «/o \e^ I

\e^ I d'2Trbe ex
+ jj-s sm' -1

:

2 ' 2e« a_

(See Ex. 4, Art. 151.)

= .4(i_..)i + .«y^n

= TTtr -\ sm 1 e

e

197. The Catenary.—From the equation of the gen-

erating curve,

a / ;
,

-;\
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we have for the surface of revolution around the axis of x

between the Umits x and 0,

S = 2n I yds = na
J

le» + e "j ds

= i-TO r(e» + e""«) dx (by Art. 177)

Tia f^l — —^\

'0

2x

= Tr— le" — e -j + ax]

=^T(\(^s + ax), (where s = VP, Fig. 45.)

198. The Smface generated by the Cycloid when
it revolves around its axis.—From its ecfuation '

y = r vers~i - + V^rx — x\ (1)

we have

dx~\ X '
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= 2y 's/Wx — 2 V^rJ'VJr — x dx [by (2)]

= 2 ^/2rx \r vers-i - + ^/%rx — ^j + f V2r (2r — a;)t

[by (1) and integrating.]

which in (4) gives

S = SttV — -^TTz-s = 87rr2 (tt — ^).

199. Surfaces of Revolution in Polar Co-ordi-

nates.—If the surface is generated by a curve referred to

polar co-ordinates, its area may be determined as follows

:

Let the axis of revolution be the initial line OX, see

Fig. 54, and from P (r, S) draw PM perpendicular to OX.
Then PM. = r sin Q, and the infinitesimal element PQ
= ds will, in its revolution round OX, generate an infini-

tesimal element of the whole surface, whose breadth = ds

and whose circumference = 27rr sin B. Hence,

8 = J^nr sin d ds* = '^-^ fr sin 6 (r» + ^^dO,

(Art. 179)

the integral being taken between proper limits.

200. The Cardioide.—From Art. 181, we have

ds = a{2 + 2 cos 6)i dO = 2a cos ^ d6.

• This expression might have been obtained at once by substituting in Art. 193,

for y, Its value r sin 9,
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For the surface of reyolution of the whole curve about
the initial line, we have tt and for the limits of e, there-

fore we have

S = / 2nr sin d ds

= lira^ / (1 + cos 6) cos -r sin 6

P' d= IQna' / cos* ^ sin jr dO

^fl

201. Any Curved Surfaces.—Double Integration.—
Let (x, y, z) and (x + dx, y -\- dy, z + dz) be two consecu-

tive points p and q on the sur-

face. Through p let planes be

drawn parallel to the two planes

xz and yz ; also through q let

two other planes be drawn par-

allel respectively to the first.

These planes will intercept an

infinitesimal element pq of the

curved surface, and the projec-

tion of this element on the

plane of xy wiU be the infini-

tesimal rectangle PQ, which = dx dy.

Let S represent the required area of the whole surface,

and dS the area of the infinitesimal element pq, and
denote by a, (i, y, the direction angles* of the normal at

p (x, y, z). Then, since the projection of d8 on the

plane of xy is the rectangle PQ = dx dy, we have by Anal.

Geom., Art. 168,

dx dy = dS cos y. (1)

Fig. 56.

* See Anal. Geom., Art. 170.
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Similarly, if d8 is projected on the planes yz and zx,

we have

dy dz = dS cos a
; (3)

dz dx = dS cos j3. (3)

Squaring (1), (3) and (3), and adding, and extracting

the square root, we have

dS = {dx>dy^ + dfdz^ + dz''dx^)i

(since cos' a + cos' /S + cos' 7 = 1,

Anal. Geom,, Art. 170).

.-. S = ffidx^dy^ + dyHz^ + dzHx^)k

r ri, dz^ dz^ w , ,= J Jv + ^+df)'^'''^^'

the limits of the integration depending upon the portion

of the surface considered.

202. The Surface of the Eighth Part of a Sphere.—
Let the surface represented in Fig. 56 be that of the

octant of a sphere ; then being its centre, its equation is

x^ + y^ + z'^ = aK

dz __ X dz _ y
dx~ z' dy ~ z

- ^^Z/^ + p + S*"^*
/> z' adxdy

J J v'ff' — o& — y^

Now since pq is the element of the surface, the effect

of a ^/-integration, x being constant, will be to sum up

all the elements similar to 'pq from H to ?; that is,

from «/ = to 2/ = L^ = «/, = Va' — ^ ; and the aggre-

Hence,
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gate of these elements is the strip 'Kpl. The effect of a

subsequent a;-integration will be to sum all these elemental

strips that are comprised in the surface of which OAB
is the projection, and the limits of this latter integra-

tion must be a; = and x = OA = a. Therefore,

we have

Va^ — x^ — y^

adxdy
^yi _ yi

= / \adx sin~' - '•

pa

EXAMPLES.

1. Find the convex surface of a right circular cone,

whose generating line is ay — ix ^ 0.

A ns. nb Va^ + ^.

Remark.—It is evident that the projection of the convex sur-

face of a right circular cone on the plane of its base, is equal

to the base; hence it follows (Alia,!. Geom., Art. 168) that the

convex surface of a right circular cone is equal to the area of its

base multiplied by the secant of the angle between the slant

ieight and the base. Thus, calling this angle a, we have in

the above example,

« = Trjs sec a = ttJ'-^!-^— = ttS y^TP,

which agrees with the answer.

3. Find the area of the surface generated by the reTolu-

tion of a logarithmic curve, y — eF, about the axis of x,

between the ^-limits and y.

Ans. TT 12/ (1 + /)* + log [2^ + (1 + ff^ \.



378 EXAMPLES.

3. Find the area of the surface generated by the revolu-

tion of the cycloid (1) about its base, and (£) about the

tangent at the highest point.

Ans. (1) ^na^; {2):_3^naK

4. Find the area of the surface generated by the revolu-

tion of the catenary about the axis of y, between the

a;-limits and x. Ans. 2it [zs — a{t/ ^ a)].

.•. - 5 = Stt / xdsi = Sir aa — / sdx ,

from which we soon obtain the answer.

5. Find the area of the surface of a spherical sector, the

vertical angle being 2« and the radius of the sphere = r.

Ans. 4:Trr^ (^^° 1).

6. Find the area of the surface generated by the revolu-

tion of a loop of the lemniscate about its axis, the equation

being r« = a'- cos 20. j^ns. na^ {% — 2*).

Here find rd» = a''dd ; .•. etc.

7. Find the area of the surface generated by the revolu-

tion of a loop of the lemniscate about its axis, the equation

being r^ = a^ sin 20. Ans. 2na\

8. A sphere is cut by a right circular cylinder, the radius

of whose base is half that of the sphere, and one of whose

^ edges passes through the centre of the sphere. Find the

area of the surface of the sphere intercepted by the cylinder.

Let the cylinder be perpendicular to the plane of xy ;

then the equations of the cylinder and the sphere are

respectively y^-=ax — x* and «* + y* -|- 2« = d^. It is

easily seen that the ^-limits are and y/ax — a?-= y^, and

the a;-limits are and a. Therefore, Art. 201, we have
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~ Jo Jo y/a^ — x^ —y/o? — x^ — y^

f"^ . , (ax — x°)i ,= a I sin"i ^^ ^ ax
Jo (cfi — x^y

a

(Art. 147)

Therefore, the whole surface = 3fl^ (tt — 2). (In Price's

Calculus, Vol. II, p. 336, the answer to this example is

c? {-n — 3), which is evidently only half of what it should

be.)

' 9. In the last example, find the area of the surface of the

cylinder intercepted by the sphere.

Eliminating y, we have z = Va^ — ax for the equation

of the projection on the plane xz of the intersection of the

sphere and the cylinder. Therefore the 2-limits are and

z, = '/W— ax, and the a;-limits are and a ; hence, Art.

201, we have

\_dx^ df + df dz> + dz^ dx^f = 1 +
(J)'

+ (g)' dxdz

CL d^ dz
- for an element of the surface of the cylinder.

2'v/aS--^

_fl pa p^^ dxdz _a^ P'^dx _ j,_ i«

2 i/fl t/o ^^/ax — 3? '^'^0 x^

therefore the whole area of the intercepted surface of the

cylinder is 4a'. (See Gregory's Examples, p. 436.)

10. The axes of two equal right circular cylinders inter-

sect at right angles ; find the area of the one which is inter-

cepted by the other. Ans. 8a*.
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Let the axes of tlie two cylinders be taken as the axes of y and z,

and let a — the radius of each cylinder. Then the equations are

y? + z'2 = a?, d' + y'^ = a-.

11. A sphere is pierced perpendicularly to the plane of

one of its great circles by two right cylinders, of which the

diameters are equal to the radius of the sphere and the axes

pass through the middle points of two radii that compose a

diameter of this great circle. Find the surface of that por-

tion of the sphere not included within the cylinders.

Ans. Twice the square of the diameter of the sphere.

12. Find the area of the surface generated by the revolu-

tion of the tractrix round the axis of x. Ans. ^naK

13. If a right circular cone stand on an ellipse, show that

the convex surface of the cone is

^ (0A -h A') (0A A')* sin «,
At

where is the vertex of the cone, A and A' the extremities

of the major axis of the ellipse, and a is the semi-angle of

the cone at the vertex. (See Eemark to Ex. 1.)



CHAPTER IX.

VOLUMES OF SOLIDS.

203. Solids of Revolution.—Let the curve AB, Fig. 55,

revolve round the axis of x, and let V denote the volume

of the solid bounded by the surface generated by the curve

and by two planes perpendicular to the axis of x, one

through A and the other through P ; then as MP and NQ
are consecutive ordinates, the volume generated by the revo-

lution of MPQN round the axis of x is an infinitesimal

element of the whole volume, and is the frustum of a cone,

the circumferences of whose bases are Stt^ and 2n [y -\- dy)

,

and whose altitude is MN = dx; therefore we have

^^^ .f + .iy+ dyy^-.y(y+ dy)^^ ^ ^^,^^^

by omitting infinitesimals of the second order. Hence, for

the whole volume generated by the area between the two

ordinates whose abscissas are a and b, where ay h, we

have

ny^dx.

In like manner, it may be shown that to find the volume

generated by revolving the arc round the axis of y, we have

V ^ -rr I xMy.

204. The Sphere.—Taking the origin at the centre of

the sphere, we have y' = a^ — a;^ ; therefore we have

F = TT ^{a^ — x^) dx
'J—a

77 {o?X — ^X^)

a

—a

for the whole volume of the sphere.
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OoK. 1.—To find the volume of a spherical segment be-

tween two parallel planes, let b and c represent the distances

of these planes from the centre ; then we have

V = TT f''{a^ - x^)dx = 7T [a^ (6 - c) — i(63 — cS)].

Cor. 2.—To find the volume of a spherical segment with

one base, let h be the altitude of the segment; then 5 = a

and c = a — h, and we have

r=n f {a^~ x^) dx = n¥ (a — 5)-

Cob. 3. ^-na^ = f of na^ x 2fl = | of the circumscribed

cylinder. (See Art. 194, Remark.)

205. The Volume generated by the Revolution of

the Cycloid about its Base.

Here dx = ^^^
(Art. 176)

;

V'iry — «/2

and integrating between the limits y = Q and y = 2r, we

find for the whole volume

V=2n

(by Ex. 6, Art. 151)= 2n^rf^

V^ry — y"

2'- yMy

V^ry — y^

= -yirn (!?•%) (by Ex. 6, Art. 151)

We have SttV = ^n {2rY x 2TTr.

Hence, the volume generated by the revolution of

the cycloid about its base is equal to five-eighths the

circumscribing cylinder.
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206. The Cissoid when it revolves round its

Asymptote.—Here OM = x, MP = y,

OA = 2a, MA = 2a — x, KD = dy;

hence an infinitesimal element of the

whole volume is genei-ated by the revo-

lution of PQDH about AT, and is

'A y^esented by n {2a — x)~dy.

The equation of the Cissoid is
Fig. 57.

r 2a

. , _ (3«-a;) (aaz-^)^
•• '^y - (2a-xf

''^'

hence, between the limits x = and x = 2a, we have

V =2n / (2a — xfdy = 2- {3a— x) {2ax—x^)i dx

'2a ^a^x — 5ax^ + x^
2nJ V2ax — x^

dx 2-n^a^

(by Ex. 6, Art. 151).

207. Volume, of Solids bounded by any Curved
Surface.— Let {x, y, z) and

{x+dx, y+ dy, z+dz) be two

consecutive points E and F
within the space whose volume

ig to be found. Through E
pass three planes parallel to

the co-ordinate planes xy, yz,

and zx; also through F pass

three planes parallel to the

first. The solid included by

these six planes is an infinitesi-

mal rectangular parallelopipe-

don, of which E and F are two opposite angles, and the

volume is dxdy dz ; the aggregate of all these solids between

Fig. 58.
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the limits assigned by the problem is the required volume.

Hence, if V denote the required volume, we have

F = / / I
dx dy dz,

the integral being taken between proper limits.

In considering the effects of these successive integrations,

let us suppose that we want the volume in Fig. 58 contained

within the three co-ordinate planes.

The effect of the 2-integration, x and y remaining con-

stant, is the determination of the volume of an infinitesimal

prismatic column, whose base is dxdy, and whose altitude

is given by the equations of the bounding surfaces ; thus, in

Fig. 58, if the equation of the surface is z^f{x,y), the

limits of the ^-integration are /(a;, y) and 0, and the volume

of the prismatic column whose height is P^ is f{x, y) dx dy

;

hence the integral expressing the volume is now a double

integral and of the form

V^ J Jf(x, y) dx dy.

If we nowintegrate with respect to y, x remaining con-

stant, we sum up the prismatic columns which form the

elemental slice Uplmq, contained between two planes per-

pendicular to the axis of x, and at an infinitesimal distance

(dx) apart. The limits of y are hi and 0, LZ being the y to

the trace of the surface on the plane of xy, and which may
therefore be found in, terms of x by putting 2 = in the

equation of the surface ; or, if the volume is included be-

tween two planes parallel to that of xz, and at distances «/o

and yi from it, «/o and y^ being constants, they are in that

case the limits of y ; in the same way we find the limits if

the bounding surface is a cylinder whose generating lines

are parallel to the axis of s. In each of these cases the

result of the z/-integration is the volume of a slice included

between two planes at an infinitesimal distance apart, the

length of which, measured parallel to the axis of y, is a
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function of its distance from the plane of yz ; thus the limits

of the ^-integration may be functions of x, and we shall

have

V = J J f{x, y) dx dy = J F{x) dx,

where F{x) dx is the infinitesimal slice perpendicular to

the axis of a; at a distance x from the origin, and the sum
of all such infinitesimal slices taken between the assigned

limits is the volume. Thus, if the volume in Pig. 58 be-

tween the three co-ordinate planes is required, and OA = a,

then the a-limits are a and 0. If the volume contained

between two planes at distances x^ and «, from the plane of

yz is required, then the a-limits are x^ and x^.

EXAMPLES.

1. The ellipsoid whose equation is

x^ y"^ .^ _ -,

a2
+ j2 + ^ - 1-

1
j — 12)

and 0, which call z^ and 0; the limits of y are \A =

1 — —J ^^^ ^> ^^ic^ ^^^^ yi ^^^ ; the a;-limits are a

and 0.

First integrate with respect to z, and we obtain the infini-

tesimal prismatic column whose base is PQ, Fig. 58, and

whose height is Pp. Then we integrate with respect to y,

and obtain the sum of all the columns which form the

elemental slice Uplmq.. Then integrating with respect to x,

we obtain the sum of all the slides included in the solid

OABC.

.-. V = 8 f" f"^ f'dx dy dz
•'0 «^o «^0

17



^'
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= -bJ, J„ W-y')'p'ds

_8c r^y?^.
-~bJo '^'i

= —J- / (ffl^ — a;') <Za; = ^nabc.

2. The volume of a right elliptic cylinder whose axis

coincides with the axis of x and whoso altitiicle = 2a, the

equation of the base being

Here the ^-limits are 7 (5' — y^)i and 0, which call «, and

; the ^-limits are b and ; the a;-limits are a and 0.

.: r=8 / / dxdydz
f/Q t/o <^o

P pa /'>b ,

„ cb-T /'«, „ ,= 8—;- I dz = 2abcn.

(See Price's Calculus, Vol.11, p. 356.)

3. The volume of the solid cut from the cylinder x^ + y^

= a^ by the planes 2 = and 2 = a; tan «.

Here the z-limits are x tan a and 0, or «, and 0; the

^/-limits are (rf^ — .t^)^ and — {a^ — x^)i, or y, and — y,

;

the a;-liraits are a and 0.
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A ^= f f^^f^dx dy dz

pa ny^
= / / {x tan a) dx dy

— 2 tan aJ X {a^ — x^)^dx — % a^ tan «.

4. The volume of the solid common to the ellipsoid

^3 + I + J
= 1 and the cylinder x^ + y^ = b^.

Here the limits of the ^-integration are ell ^)

and 0, or «, and ; the limits of the a-integration are

(53 _ ^2)1 and 0, or Xi and 0; the ^/-limits are and b*

J J dy dx dz

dy dx

_8c r
aJn

.2„2 xi «'-w2/'

("-T-^')

(b'-y')i

dy

'I' In this ezample, this order of integration is simpler than it fvould he to tal^e

It with respect to y and then x.



388 EXAMPLES.

(See Mathematical Visitor, 1878, p. 36.)

208. Mixed System of Co-ordinates.—Instead of

dividing a solid into columns standing on rectangular

bases, so that z dx dy is the

Tolume of the infinitesimal

column, it is sometimes more

convenient to divide it into

infinitesimal columns standing

on the polar element of area

ahcd = r dr dd, in which case

the corresponding parallelopipedon is represented by

zr dr dd, and the expression for V becomes

Fig. 59

V = J fzrdrde,

taken between proper limits. From the equation of the

surface, z must be expressed as a function of r and 0.

EXAMPLES.

1. Find the volume included between the plane z = Q,

and the surfaces a;^ + ^/^ = 4a3 and y'^ = 2cx — x\

Here z = a;3 + .

""la"
-r- ; hence the 2-limits are ^- and 0.
ia w

The equation of the circle y^ = Sea; — o^, in polar co-or-

dinates, is r= 2c cos 6 ; hence the r-limits are and

2c cos Q, or and r, ; and the ^-limits are and 5-

~ '^

Jo Jo 4:a

Jo 'a

Sttc*

8 a

cos* 6 de

dddr

^77. (Ex. 4, Art. 157.)
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2. The axis of a right circular cylinder of radius i,

passes through the centre of a sphere of radius a, when
a > J ; find the Tolume of the solid common to both

surfaces.*

Take the centre of the sphere as origin, and the axis of

the cylinder as the axis of z; then the equations oi the

surfaces are a? -\- y^ -\- z^ =: a^ and a;^ + y^ — j2. q^^ in

terms of polar co-ordinates, the equation of the cylinder

is r = J.

Hence for the volume in the first octant, the z-limits are

Va" — x^ — y^ or Va' — r^ and ; the r-limits are i

and ; the 6-limits are ^ and 0.

'/7
/>5ir rtb

\ J T{a

b

zr dr dd

r !)* de dr

de

(See Gregory's Examples, p. 438.)

209. The polar element of plane area is r dr dO (Art.

308). Let this element revolve round the initial line

through the angle Stt, it will generate a solid ring whose

volume is Srrr sin Or dr dO, since %-nr sin is the circumfer-

ence of the circle described by the point {r, 6). Let ^
denote the angle which the plane of the element in any

position makes with the initial position of the plane
;

then d<j> is the angle which the plane in any position makes

• This example, as well as the preceding one, might be integrated directly in

terms of a; and y by the method of Art. 207, but the operation woald be more com-

plex than the one adopted.
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with its consecutive position. The part of the solid ring

which is intercepted between the revolving plane in these

two consecutive positions, is to the whole ring in the same

proportion as d<t> is to 2^. Hence the volume of this

intercepted part is

r^ sin d d(j) dO dr,

which is therefore an expression in polar co-ordinates for

an infinitesimal element of any solid. Hence, for the

volume of the whole solid we have

V = fffr^ sin d<t> dd dr,

in which the limits of the integration must be so taken

as to include all the elements of the proposed solid. In

this formula r denotes the distance of any point from the

origin, 8 denotes the angle which this distance makes with

some fixed right line through the origin (the initial line),

and denotes the angle which the plane passing through

this distance and the initial line makes with some fixed

plane passing through the initial line. (See Lacroix Cal-

cul Int6gral, Vol. II, p. 309.)

The order in which the integrations are to be effected is

theoretically arbitrary, but in most eases the form of the

equations of surfaces makes it most convenient to integrate

first with respect to r ; but the order in which the 0- and

^-integrations are effected is arbitraiy.

EXAMPLES.

1. The volume of the octant of a sphere. Let a = the

radius of the sphere ; then the limits of r are and a ;

hence,

V =yy J'
sin e dtji de.

In thus integrating with respect to r, we collect all the

elements like r^ sin d d^ dQ dr which compose a pyramidal
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solid, having its vertex at the centre of the sphere, and for

its base the curvilinear element of spherical surface which

is denoted by a^ sin 6 d^ dd.

Integrating next with respect to between the limits

and - , we have

F^/f[(-cos.)]% = /j^#.

In thus integrating with respect to 0, we coUect all the

pyramids similar to ^ sin 6 d<t> dd, which form a wedge-

shaped slice of the solid contained between two consecutive

planes through the initial line.

Lastly, integrating with respect to <p from to -,

we have

V^-f- (See Todhunter's Int. Cal., p. 183.)

In this example the order of the integrations is imma-

terial.

2. The volume of the solid common to a sphere of

radius a, and the right circular cone whose vertical angle

is 2a and whose vertex is at the centre of the sphere.

Here the r-limits are and a, the 0-limits are and «,

the 0-limits are and 3«.

.: V= / I / r^ sin d d<t> dd dr
«/o '-'0 'Jq

= / ~ Bind d^dd
t/O t'O "

= / - (i — COS a)d^
'0

= fiftS (1 _ cos a).
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EXAMPLES.

1. Find the volume of a paraboloid of reyolution whose

altitude = a and the radius of whose base = b.

Ans. -^ai^.

2. Find the volume of the prolate spheroid. * Also of

the oblate spheroid. Ans. The prolate spheroid — ^naV:

The oblate spheroid = ^nc^l.

3. Find the volume of the solid generated by the revolu-

tion of y =: cf about the axis of x, between the limits x

and -00, where «>1.
Ans. I a^ {log a)-^

4. Find the volume of the solid generated by the revolu-

tion of y = a log X about the axis of x, between the

limits X and 0. Ans. "C?x (log^ x — 3 log x + 3).

5. Find the volume of the solid generated by the

revolution of the tractrix round the axis of x. Ans. \nc^.

6. Find the volume of the solid generated by the

revolution of the catenary round the axis of x.

Ans. ^ a {ys -|- ax). (Compare with Art. 197.)

7. Find the volume generated by the revolution of a

parabola about its base 2b, the height being h.* (See

Art. 306.) Ans. \^nbh\

8. The equation of the Witch of Agnesi being

y

find the volume of the solid generated by its revolution

round the asymptote. Ans. i^n^aK

* This solid is called a parabolic spindle.
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9. Find the volume of a rectangular parallelopipedon,
three of whose edges meeting at a point are a, h, c. (See
Art. 207.) j^ns. abc.

10. Find the yolume contained within the surface of an
elliptic paraboloid * whose equation is

^ + - = 2a;,
a b

and a plane parallel to that of yz, and at a distance c from it.

Ans. n(^{ab)i.

11. The axes of two equal right circular cylinders inter-

sect at right angles, their equations being x^ + z^ = a^ and
a? -\- y^ = a^; find the volume of the solid common to both.

Ans. ^aK
13. A paraboloid of revolution is pierced by a right cir-

cular cylinder, the axis of which passes through the focus

and cuts the axis of the paraboloid at right angles, the

radius of the cylinder being one-fourth the latus-rectum of

the generating parabola ; find the volume of the solid com-
mon to the two surfaces. , „/2 n\

. Ans.p''[^ + -^.

Here the equations of the surfaces are

y^ + e^ = 2px and x^+y^ =px.

13. Find the volume of the solid cut from the cylinder

3? + y^= 2az by the planes z = x tan « and z=^x tan /?.

Ans. 2 (tan /J — tan «) -^ •

14. Find the volume of the solid common to both sur-

faces in Ex. 8 of Art. 202. (See Art. 208.)

Ans. 1(377 — 4) a8.

15. Find the volume of the part of the hemisphere in the

last example, which is not comprised in the cylinder.

Ans. fa'.

* Called elliptic paraboloid becanse the sections made by planes parallel to the

planes of xy and xz are parabolas, while those narallel to the plane of yz are

ellipseB. (Salmon's Anal. Geom. of Three Dimensions, p. S8.)
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16. Find the volume of the solid intercepted between the

concave surface of the sphere and the conveX'^.rface of the

cylinder in Art. 208, Ex. 2. _^ns. ^tt (a^ _ ja)!.

17. Find the volume of the solid comprised between the

SiTirface z^ae "°~ and the plane of a;«/. Ans. na(?.

Here the r-limits are and oo
; and the fl-limits are and 3t.

18. Find the volume of the solid generated by the revo-

lution of the cardioide r = a (1 + cos S) about the initial

line.

Here V = I I I r^ sm 6 dO d(f) dr = etc.

(See Art. 209.) , 8-rra^
Ans. —5—

•

19. Find the volume of the solid generated by the revo-

lution of the Spiral of Archimedes, r = aO, about the initial

line between the limits 6 =.tt and = 0.

Ans. fTT^ftS (ttS _ 6).

20. A right circular cone whose vertical angle = 2a, has

its vertex on the surface of a sphere of radius a, and its

axis coincident with the diameter of the sphere ; find the

volume common to the cone and the sphere.

. Arra^ ,^ , .

Ans. —5- (1 — cos* a).

21. Find the volume of a chip cut at an angle of 45° to

the centre of a round log with radius r. (Mathematical

Visitor, 1880, p. 100.) Ans. ir\

22. Find the volume bounded by the surface

and the positive sides of the three co-ordinate planes.

. ahc
Ans. ^.
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23. Find the volume of the solid bounded by the three

surfaces x^ + y^ ^ cz, x' + y^ = ax, and z = 0.

3TTa*
^"^-

33c-

24. A paraboloid of revolution and a right circular cone

have the same base, axis, and vertex, and a sphere is

described upon this axis as diameter. Show that the volume

intercepted between the paraboloid and cone bears the same

ratio to the volume of the sphere that the latus-rectum of

the parabola bears to the diameter of the sphere.

25. Find the volume included between a right circular

cone whose vertical angle is 60° and a sphere of radius r

touching it along a circle, by the formula

F = / / I dx dy dz.

Ans. -g-

26. In the right circular cone given in Ex. 13 of Art

202, prove that its volume is represented by
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